Connect with us
SpaceX has finally set the date for Crew Dragon's In-Flight Abort test. (Teslarati - Pauline Acalin) SpaceX has finally set the date for Crew Dragon's In-Flight Abort test. (Teslarati - Pauline Acalin)

News

SpaceX Crew Dragon In-Flight Abort test gets its first firm launch date

SpaceX has finally set the date for Crew Dragon's In-Flight Abort test. (Teslarati - Pauline Acalin)

Published

on

The day after questions arose around the targeted launch date of SpaceX’s Crew Dragon In-Flight Abort test (IFA), SpaceX and NASA have officially set the date for the spacecraft’s next major flight test.

On Friday, December 6th, a NASA Commercial Crew Program blog post confirmed a NET date of Saturday, January 4th, 2020 for the IFA test. The IFA test is one of the most notable final steps to be completed by the Crew Dragon capsule prior to supporting crewed astronaut flight to the International Space Station in 2020 as a part of NASA’s Commercial Crew Program.

Following an apparent incorrect statement made during SpaceX’s CRS-19 webcast that identified a February 2020 target date of the IFA test, SpaceX provided re-assurance that teams were very much still working toward a NET December launch date.

The SpaceX Falcon 9 rocket with the company’s Crew Dragon spacecraft onboard is seen on the launch pad at Launch Complex 39A as preparations continue for the Demo-1 mission, Friday, March 1, 2019 at the Kennedy Space Center in Florida. (NASA/Joel Kowsky)

A January 4th date falls just short of SpaceX’s December goal but it still comes as little surprise. In addition to this week’s CRS-19 launch, SpaceX aims to support two more launches prior to year’s end – an internal mission to launch 60 more Starlink satellites and the launch of the JCSAT 18/Kacific 1 communications satellite for customers SKY Perfect JSAT Corp. of Japan and Kacific Broadband Satellites of Singapore. While completing four Falcon 9 launches and landings in a period of less than four weeks is certainly possible for SpaceX, it was rather ambitious, especially given that Crew Dragon’s abort test is almost certainly the company’s preeminent priority.

The targeted January launch date now encroaches into the first quarter of 2020, which SpaceX has adamantly stated is also the goal for Crew Dragon’s first NASA astronaut launch, known as Demo-2. With the IFA test now NET January 4th, it will be a major challenge for NASA and SpaceX to turn around and prepare Crew Dragon and Falcon 9 for Demo-2 just 4-12 weeks later. Of note, Boeing is preparing its own Starliner spacecraft for an uncrewed launch test NET December 20th and has also claimed that it wants to launch a crewed flight test (CFT, akin to SpaceX Demo-2) as early as February 2020, same as SpaceX.

It’s extremely unlikely that NASA will be able to preserve both of those schedules given the Commercial Crew Program’s fixed workforce and the vast quantity of paperwork it must complete before the agency can give the go-ahead for SpaceX and Boeing astronaut launches.

Advertisement
(Pauline Acalin)
Crew Dragon lifts off atop Falcon 9 B1051 for the first time ever on March 2nd, 2019. (Teslarati – Pauline Acalin)

Unsurprisingly, the blog post confirmed that the IFA test would launch from Kennedy Space Center Launch Complex 39A (LC-39A). Pad 39A is the same facility that previously supported Crew Dragon’s March 2019 Demo-1 launch debut and is the only pad SpaceX intends to launch Crew Dragon from.

Interestingly, Pad 39A is also an active construction site – SpaceX is in the midst of building a new launch mount and modifying existing facilities to support future launches of SpaceX’s next-generation Starship vehicle. Construction has been underway for a few months and is situated directly beside Falcon 9 and Falcon Heavy’s exiting launch mount.

Although that construction will not be allowed to interfere with Crew Dragon launch activity, including the IFA test, construction on the Starship mount will likely be impacted. Construction crews will undoubtedly be expected to evacuate the area surrounding the launchpad during any Falcon 9 static fire test or launch, likely translating to a few days to a few weeks of downtime depending on how SpaceX handles the scheduling.

As 2019 comes to a close, SpaceX remains determined to launch Crew Dragon’s IFA test as quickly as is safely possible. If all goes perfectly during the upcoming abort test, SpaceX says it is seriously targeting Crew Dragon’s biggest test yet – its inaugural astronaut launch – less than two months later in February 2020. It should go without saying that that schedule is incredibly ambitious and highly liable to slip in March or Q2, but if the ambition is there, SpaceX believes it is technically possible.

For now, we have less than a month to wait for Crew Dragon’s next launch milestone and perhaps just 2-3 weeks before the spacecraft and its Falcon 9 rocket roll out to Pad 39A to prepare for a routine static fire test.

Advertisement

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

Space Reporter.

Advertisement
Comments

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

Advertisement

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Advertisement
Continue Reading