News
SpaceX director says six Crew Dragon launches per year is a sustainable goal
A senior manager says that SpaceX could sustainably launch six or more Crew Dragons per year if the market for private missions grows large enough to demand it.
Benji Reed, Senior Director of Human Spaceflight Programs, offered his thoughts on the matter in a press conference following SpaceX’s successfully recovery of Crew Dragon and four private Axiom-1 astronauts from the Gulf of Mexico, marking the end of the first all-private mission to the International Space Station (ISS). Asked what kind of launch cadence SpaceX believes it could handle going forward, Reed stated that he “would love to see…half a dozen crew flights…or more” per year and believes that “SpaceX can sustain that [pace] if there’s a market for it.”
The question is an important one after a SpaceX executive confirmed to Reuters earlier this year that the company has already ended production of Crew Dragon after building just a handful of reusable capsules. With that fleet of four spacecraft, it hasn’t been clear how many crewed missions SpaceX can – or thinks it can – launch each year. To some extent, it’s long been expected that SpaceX would try to replace both Falcon rockets and Dragon spacecraft with Starship as soon as the next-generation fully-reusable rocket is ready.
However, without major redesigns or a new and heavily modified variant of the rocket’s upper stage, it’s difficult to imagine NASA transitioning its International Space Station astronaut launches from Dragon to Starship anytime soon. Even though Starship could feasibly revolutionize spaceflight and NASA has already contracted with SpaceX to build a version of the rocket to land NASA astronauts on the Moon, the one thing it’s hard to imagine the space agency ever compromising on is safety. Crew Dragon has a built-in launch escape system that allows the capsule to almost instantly whisk astronauts away from a failing rocket at any point before or during a launch.


Starship has no such escape system and SpaceX has no apparent plans to develop a variant of the crew-carrying ship with a comparable abort system. Because the Starship rocket’s second stage is the orbital spacecraft, crew cabin, and reentry vehicle, it simply isn’t possible for the current design of the next-generation vehicle to match the theoretical safety of Falcon 9 and Crew Dragon. CEO Elon Musk has discussed increasing the number of engines on Starship to allow it to escape from a failing booster but that would leave astronauts with no way to escape from the upper stage itself.
On top of Dragon’s fundamentally superior safety capabilities, Falcon 9 also has an extraordinary record of 125 consecutively successful launches. If NASA wouldn’t let Dragon launch its astronauts on Falcon 9 without an active escape system, it’s hard to imagine how many consecutive launch successes Starship would need before the agency would even think about retiring Crew Dragon.
This is all to say that SpaceX is likely going to be stuck operating Crew Dragon for the indefinite future as long as it’s too stubborn to develop a true launch escape system for Starship. Even though the recently announced Polaris Program aims to culminate in the “first flight of Starship with humans on board,” it’s likely that most private SpaceX crew launch customers will follow NASA’s lead.
Thankfully, even with four Crew Dragon capsules, it’s likely that SpaceX can manage significantly more than six crewed missions per year if the demand is there and commercial passengers – mirroring NASA – aren’t ready to risk flying on Starship. Already, SpaceX has successfully launched the same Crew Dragon capsule to orbit twice in 137 days. If SpaceX continues flying back-to-back NASA crew transport missions while Boeing’s Starliner inches through qualification, that will tie up two Dragons per year, limiting SpaceX to two launches for NASA and around four to five private astronaut launches per year.

Assuming Starliner finally reaches operational readiness and begins supporting every other NASA crew launch, SpaceX could feasibly launch one NASA mission and seven private missions (lasting up to two weeks each) per year by the end of 2023. Additionally, if SpaceX can improve Crew Dragon turnaround to 120 days, the fleet could support 10 crew launches per year. 90 days? 13 launches per year. Private missions to the ISS would add plenty of schedule constraints, reducing the total number of opportunities, but that’s a minor problem in comparison.
The only lingering technical concern, then, is the longevity of SpaceX’s Crew Dragon capsule fleet. SpaceX and NASA have initially certified each capsule for five missions, but after Crew-4’s April 27th launch, the fleet has already eaten up 7 of the 20 flights that limit permits. Assuming no additional demand for private launches, the remaining 13 ‘certified’ flights might last SpaceX through 2024. Sooner than later, with NASA’s blessing, it will either need to significantly increase the number of missions each capsule is certified to fly, build new capsules, or find a way to transition to Starship.
News
Tesla aims to combat common Full Self-Driving problem with new patent
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.
Tesla is aiming to combat a common Full Self-Driving problem with a new patent.
One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.
Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.
Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.
Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”

The patent was first spotted by Not a Tesla App.
The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”
Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.
This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.
CEO Elon Musk said during the Q2 Earnings Call:
“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”
Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.
Elon Musk
Delaware Supreme Court reinstates Elon Musk’s 2018 Tesla CEO pay package
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla.
The Delaware Supreme Court has overturned a lower court ruling, reinstating Elon Musk’s 2018 compensation package originally valued at $56 billion but now worth approximately $139 billion due to Tesla’s soaring stock price.
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla. Musk quickly celebrated the outcome on X, stating that he felt “vindicated.” He also shared his gratitude to TSLA shareholders.
Delaware Supreme Court makes a decision
In a 49-page ruling Friday, the Delaware Supreme Court reversed Chancellor Kathaleen McCormick’s 2024 decision that voided the 2018 package over alleged board conflicts and inadequate shareholder disclosures. The high court acknowledged varying views on liability but agreed rescission was excessive, stating it “leaves Musk uncompensated for his time and efforts over a period of six years.”
The 2018 plan granted Musk options on about 304 million shares upon hitting aggressive milestones, all of which were achieved ahead of time. Shareholders overwhelmingly approved it initially in 2018 and ratified it once again in 2024 after the Delaware lower court struck it down. The case against Musk’s 2018 pay package was filed by plaintiff Richard Tornetta, who held just nine shares when the compensation plan was approved.
A hard-fought victory
As noted in a Reuters report, Tesla’s win avoids a potential $26 billion earnings hit from replacing the award at current prices. Tesla, now Texas-incorporated, had hedged with interim plans, including a November 2025 shareholder-approved package potentially worth $878 billion tied to Robotaxi and Optimus goals and other extremely aggressive operational milestones.
The saga surrounding Elon Musk’s 2018 pay package ultimately damaged Delaware’s corporate appeal, prompting a number of high-profile firms, such as Dropbox, Roblox, Trade Desk, and Coinbase, to follow Tesla’s exodus out of the state. What added more fuel to the issue was the fact that Tornetta’s legal team, following the lower court’s 2024 decision, demanded a fee request of more than $5.1 billion worth of TSLA stock, which was equal to an hourly rate of over $200,000.
Delaware Supreme Court Elon Musk 2018 Pay Package by Simon Alvarez
News
Tesla Cybercab tests are going on overdrive with production-ready units
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the vehicle being reported across social media this week.
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the autonomous two-seater being reported across social media this week. Based on videos of the vehicle that have been shared online, it appears that Cybercab tests are underway across multiple states.
Recent Cybercab sightings
Reports of Cybercab tests have ramped this week, with a vehicle that looked like a production-ready prototype being spotted at Apple’s Visitor Center in California. The vehicle in this sighting was interesting as it was equipped with a steering wheel. The vehicle also featured some changes to the design of its brake lights.
The Cybercab was also filmed testing at the Fremont factory’s test track, which also seemed to involve a vehicle that looked production-ready. This also seemed to be the case for a Cybercab that was spotted in Austin, Texas, which happened to be undergoing real-world tests. Overall, these sightings suggest that Cybercab testing is fully underway, and the vehicle is really moving towards production.
Production design all but finalized?
Recently, a near-production-ready Cybercab was showcased at Tesla’s Santana Row showroom in San Jose. The vehicle was equipped with frameless windows, dual windshield wipers, powered butterfly door struts, an extended front splitter, an updated lightbar, new wheel covers, and a license plate bracket. Interior updates include redesigned dash/door panels, refined seats with center cupholders, updated carpet, and what appeared to be improved legroom.
There seems to be a pretty good chance that the Cybercab’s design has been all but finalized, at least considering Elon Musk’s comments at the 2025 Annual Shareholder Meeting. During the event, Musk confirmed that the vehicle will enter production around April 2026, and its production targets will be quite ambitious.