Connect with us

SpaceX

SpaceX’s Crew Dragon spacecraft nears launch debut as Falcon 9 tests wrap up

DM-1's rocket booster, Falcon 9 B1051, is nearly done with acceptance testing in Texas. (SpaceX)

Published

on

Known as Demonstration Mission 1 (DM-1), the inaugural flight of SpaceX’s Crew Dragon spacecraft is closer than ever before as the company wraps up ground testing of the rocket that will launch it.

Meanwhile, astronauts Doug Hurley and Bob Behnken are continuing to prepare for DM-2 – the first launch of Crew Dragon with crew onboard – by familiarizing themselves with SpaceX’s completed hardware, software, and procedures.

Originally expected to occur before the end of 2017, Commercial Crew partners SpaceX, Boeing, and NASA have been forced to repeatedly delay the inaugural uncrewed and crewed launches of both the Crew Dragon (SpaceX) and Starliner (Boeing) crew transport vehicles, which have slipped roughly 3-6 months with every quarterly schedule update.

Advertisement

Generally speaking, the sources of those delays can be split evenly between NASA and its two commercial partners. A majority of the commercial-side slips can be attributed to unexpected hardware failures between the beginning of the Commercial Crew Program (CCP) and expected launch dates, with SpaceX experiencing two catastrophic failures of Falcon 9 (CRS-7 and Amos-6) and Boeing suffering a major anomaly while performing ground tests ahead of a Starliner pad-abort. Prior to the September 2016 Amos-6 failure of Falcon 9, SpaceX was arguably on track for the inaugural launch of Crew Dragon in late-2017/early-2018, having already completed a successful pad-abort demonstration in 2015 and eight successful launches since the CRS-7 failure.

The Statue and the Hare

Aside from serious hardware failures, the rest of SpaceX’s Commercial Crew delays can be blamed on the company’s tendency to relentlessly iterate, improve, and generally modify both its hardware and software, to the extent that SpaceX’s Vice President of Production stated in mid-2018 that “[SpaceX has] never built any two vehicles identically”. For NASA’s often dysfunctionally and counterproductively risk-averse human spaceflight divisions, that sentence alone is probably enough to trigger panic attacks. As a result, SpaceX has been led to significantly change its style of operations over the last several years, reaching some sort of compromise that was more acceptable to NASA.

Further, despite the failures of CRS-7 and Amos-6, SpaceX continued to dramatically modify Falcon 9’s design – a major vehicle-wide upgrade known as Falcon 9 1.2 (Full Thrust, Block 1) debuted on the CRS-7 return-to-flight, while Amos-6 would have been the first launch of Falcon 9 Block 3 and likely failed as a result of faster fueling procedures and much colder propellant. Less than a year later, SpaceX debuted Falcon 9 Block 4. Roughly half a year after that, SpaceX debuted Falcon 9 Block 5, perhaps the most significant upgrade to the rocket yet. Ultimately, all changes made to Falcon 9 and Crew Dragon translate into additional work for NASA and SpaceX, known formally as “certification” and informally as exhaustive testing sandwiched by mountains of paperwork.

 

In the case of the CCP, NASA itself has been a major source of delays as Boeing and SpaceX get much closer to launch dates and hardware is effectively completed, integrated, and ready to go. According to both Hans Koenigsmann (VP of Flight Reliability) and Gwynne Shotwell (President and COO) in the last few months, both executives were supremely confident that the hardware (Crew Dragon: capsule, trunk; Falcon 9: Merlins, upper stage, booster; Launch Complex 39A) would be ready for DM-1 no later than December 2018. Those statements imply that additional delays were unlikely to be a consequence of hardware readiness, indicating that delays beyond December would presumably be caused by paperwork and/or ISS scheduling.

Advertisement

In this sense, it could well be the case that NASA’s behind-schedule completion of critical certification and approval paperwork – paperwork that NASA alone required and knew it would have to finish prior to launch for the last several years – will or already have delayed SpaceX’s first Crew Dragon launch by at least a month. DM-1 is currently targeting a launch in January 2019.


For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX posts Starship booster feat that’s so nutty, it doesn’t even look real

The Super Heavy booster’s feat was so impressive that the whole maneuver almost looked like it was AI-generated.

Published

on

Credit: SpaceX/X

SpaceX has shared a video of a remarkable feat achieved by Starship’s Super Heavy booster during its 11th flight test.

The Super Heavy booster’s feat was so impressive that the whole maneuver, which was captured on video, almost looked like it was AI-generated.

Super Heavy’s picture perfect hover

As could be seen in the video shared by SpaceX, Starship’s Super Heavy booster, which is nearly 400 feet tall, smoothly returned to Earth and hovered above the Gulf of America for a few seconds before it went for its soft water landing. The booster’s picture-perfect maneuver before splashing down all but capped a near-flawless mission for Starship, which is about to enter its V3 era with Flight 12.

The booster’s balance and stability were so perfect that some users on X joked that the whole thing looked AI-generated. Considering the size of Super Heavy, as well as the fact that the booster was returning from space, the hovering display all but showed that SpaceX is dead serious about keeping its dominant lead in the spaceflight sector.

Starship V2’s curtain call

As noted in a Space.com report, Flight Test 11 achieved every major goal SpaceX had set for the mission, including deploying Starlink mass simulators, relighting Raptor engines in space, and executing a stable reentry for both the Starship Upper Stage and the Super Heavy booster. The feat also marked the second time a Super Heavy booster has been reflown, a milestone in SpaceX’s quest to make the entire Starship system fully reusable.

Advertisement

Starship’s V2 vehicle will now give way to the upgraded Starship V3, which is designed for faster turnaround and higher payload capacity. The Starship program is expected to pursue even more aggressive targets in the coming months as well, with Elon Musk stating on social media platform X that SpaceX will attempt a tower catch for Starship Upper Stage as early as spring 2026.

Continue Reading

Elon Musk

Starship’s next chapter: SpaceX eyes tower catch after flawless Flight 11

Elon Musk has revealed the tentative timeframe for Starship’s next milestone that would push the spacecraft’s reusability to a whole new level. 

Published

on

Credit: SpaceX

Elon Musk has revealed the tentative timeframe for Starship’s next milestone that would push the spacecraft’s reusability to a whole new level. 

Following Flight 11’s flawless mission, Musk noted on X that SpaceX will be aiming to catch the Starship Upper Stage with its launch tower as early as spring 2026. This should pave the way for SpaceX to start optimizing Starship for maximum reusability.

Flight 11 closes the Starship V2 chapter on a high note

Starship’s eleventh flight, which launched from Starbase, Texas, achieved every major mission objective. The Super Heavy booster completed a successful ascent, hover, and soft splashdown in the Gulf of America, while the upper stage executed an orbit burn, deployed Starlink simulators, and returned with a controlled reentry over the Indian Ocean.

This mission officially closed the chapter on the second-generation Starship and first-generation Super Heavy booster, and it set the stage for a redesigned vehicle built for orbital payload missions, propellant transfer, and beyond. It should be noted that Elon Musk has mentioned on X that Starship V3, at least if things go well, might be capable of reaching Mars.

Elon Musk confirms tower catch attempt set for spring

After Flight 11’s success, Musk confirmed that SpaceX will attempt to catch the Starship Upper Stage with its launch tower arms, fondly dubbed by the spaceflight community as “chopsticks,” in the coming months. Musk’s announcement came as a response to an X user who asked when the tower could start catching the Starship Upper Stage. In his reply, Musk simply wrote “Springtime.” 

Advertisement

Starship’s reusability is a key feature of the spacecraft, with SpaceX aiming to achieve a launch cadence that is almost comparable to conventional aircraft. For such a scenario to be feasible, launch tower catches of both Starship’s Upper Stage and its Super Heavy booster have to be routine.

Continue Reading

Elon Musk

SpaceX is preparing to launch Starship V2 one final time

The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades.

Published

on

Credit: SpaceX/X

SpaceX is preparing to launch its final Starship V2 rocket on October 13, 2025. The launch closes the curtain on Starship V2 and marks the start of the ambitious spacecraft’s V3 era. 

Liftoff for Flight 11 is scheduled for 7:15 p.m. ET from Starbase in South Texas, with a 75-minute launch window. The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades ahead of the transition to the next-generation Starship V3.

Starship V3 and beyond

Elon Musk confirmed on X that Starship V3 is already in production and could be “built & tested” and perhaps even flown before the end of 2025. The new version is expected to feature major performance and scale improvements, with Musk stating that Starship V3, provided that things go well, might be capable of reaching Mars, though V4 is more likely to perform a full-scale mission to the red planet. 

“Only one more V2 left to launch,” Musk wrote back in August following Starship’s successful Flight 10 mission. In another post, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.”

Starship V2’s final mission

Flight 11 is designed to push the limits of Starship V2. SpaceX engineers have intentionally removed heat-shield tiles in vulnerable areas to analyze how the vehicle handles atmospheric reentry under stress, as noted in a Space.com report. The test will also refine subsonic guidance algorithms and new landing burn sequences for the Super Heavy booster that would be used for Starship V3.

Advertisement

“Super Heavy will ignite 13 engines at the start of the landing burn and then transition to a new configuration with five engines running for the divert phase. Previously done with three engines, the planned baseline for V3 Super Heavy will use five engines during the section of the burn responsible for fine-tuning the booster’s path, adding additional redundancy for spontaneous engine shutdowns. 

“The booster will then transition to its three center engines for the end of the landing burn, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America,” SpaceX wrote in a post on its official website.

Continue Reading

Trending