

SpaceX
SpaceX’s Crew Dragon spacecraft nears launch debut as Falcon 9 tests wrap up
Known as Demonstration Mission 1 (DM-1), the inaugural flight of SpaceX’s Crew Dragon spacecraft is closer than ever before as the company wraps up ground testing of the rocket that will launch it.
Meanwhile, astronauts Doug Hurley and Bob Behnken are continuing to prepare for DM-2 – the first launch of Crew Dragon with crew onboard – by familiarizing themselves with SpaceX’s completed hardware, software, and procedures.
Commercial crew astronauts Bob Behnken and Doug Hurley are getting familiar with operating inside @SpaceX's Crew Dragon, fully suited! pic.twitter.com/41cqRwhzdp
— NASA Commercial Crew (@Commercial_Crew) November 2, 2018
Originally expected to occur before the end of 2017, Commercial Crew partners SpaceX, Boeing, and NASA have been forced to repeatedly delay the inaugural uncrewed and crewed launches of both the Crew Dragon (SpaceX) and Starliner (Boeing) crew transport vehicles, which have slipped roughly 3-6 months with every quarterly schedule update.
Generally speaking, the sources of those delays can be split evenly between NASA and its two commercial partners. A majority of the commercial-side slips can be attributed to unexpected hardware failures between the beginning of the Commercial Crew Program (CCP) and expected launch dates, with SpaceX experiencing two catastrophic failures of Falcon 9 (CRS-7 and Amos-6) and Boeing suffering a major anomaly while performing ground tests ahead of a Starliner pad-abort. Prior to the September 2016 Amos-6 failure of Falcon 9, SpaceX was arguably on track for the inaugural launch of Crew Dragon in late-2017/early-2018, having already completed a successful pad-abort demonstration in 2015 and eight successful launches since the CRS-7 failure.
- In this illustration, a SpaceX Crew Dragon spacecraft is shown in low-Earth orbit. (SpaceX)
- SpaceX’s Demo Mission-1 Crew Dragon seen preparing for vacuum tests at a NASA-run facility, June 2018. (SpaceX)
- The DM-1 Crew Dragon testing inside SpaceX’s anechoic chamber, May 2018. (SpaceX)
- NASA Astronaut Suni Williams, fully suited in SpaceX’s spacesuit, interfaces with the display inside a mock-up of the Crew Dragon spacecraft in Hawthorne, California, during a testing exercise on April 3. (SpaceX)
The Statue and the Hare
Aside from serious hardware failures, the rest of SpaceX’s Commercial Crew delays can be blamed on the company’s tendency to relentlessly iterate, improve, and generally modify both its hardware and software, to the extent that SpaceX’s Vice President of Production stated in mid-2018 that “[SpaceX has] never built any two vehicles identically”. For NASA’s often dysfunctionally and counterproductively risk-averse human spaceflight divisions, that sentence alone is probably enough to trigger panic attacks. As a result, SpaceX has been led to significantly change its style of operations over the last several years, reaching some sort of compromise that was more acceptable to NASA.
Further, despite the failures of CRS-7 and Amos-6, SpaceX continued to dramatically modify Falcon 9’s design – a major vehicle-wide upgrade known as Falcon 9 1.2 (Full Thrust, Block 1) debuted on the CRS-7 return-to-flight, while Amos-6 would have been the first launch of Falcon 9 Block 3 and likely failed as a result of faster fueling procedures and much colder propellant. Less than a year later, SpaceX debuted Falcon 9 Block 4. Roughly half a year after that, SpaceX debuted Falcon 9 Block 5, perhaps the most significant upgrade to the rocket yet. Ultimately, all changes made to Falcon 9 and Crew Dragon translate into additional work for NASA and SpaceX, known formally as “certification” and informally as exhaustive testing sandwiched by mountains of paperwork.
- DM-2 astronauts Bob Behnken and Doug Hurley train for their first flight in Crew Dragon. (NASA)
- SpaceX Crew Dragon capsule C203 – then assigned DM-2 – is seen here in August 2018. (Pauline Acalin)
- SpaceX installed its Crew Access Arm (CAA) in September 2018. (Tom Cross)
- SpaceX’s extraordinary custom spacesuit. Crew Dragon astronauts will wear this suit while inside the space capsule. (Pauline Acalin)
- A concert of Draco thrusters work to push Dragon away from the ISS and back towards Earth. (ESA)
In the case of the CCP, NASA itself has been a major source of delays as Boeing and SpaceX get much closer to launch dates and hardware is effectively completed, integrated, and ready to go. According to both Hans Koenigsmann (VP of Flight Reliability) and Gwynne Shotwell (President and COO) in the last few months, both executives were supremely confident that the hardware (Crew Dragon: capsule, trunk; Falcon 9: Merlins, upper stage, booster; Launch Complex 39A) would be ready for DM-1 no later than December 2018. Those statements imply that additional delays were unlikely to be a consequence of hardware readiness, indicating that delays beyond December would presumably be caused by paperwork and/or ISS scheduling.
In this sense, it could well be the case that NASA’s behind-schedule completion of critical certification and approval paperwork – paperwork that NASA alone required and knew it would have to finish prior to launch for the last several years – will or already have delayed SpaceX’s first Crew Dragon launch by at least a month. DM-1 is currently targeting a launch in January 2019.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
U.S. Judge dismisses lawsuit against SpaceX Starship Boca Chica launch site
The ruling found that the FAA had met its obligations in reviewing the potential environmental effects of Starship launches.

A U.S. district court judge has dismissed a lawsuit brought by conservation groups challenging the Federal Aviation Administration’s approval of SpaceX’s expanded rocket launch operations in Boca Chica, Texas.
The ruling, issued Monday, found that the FAA had met its obligations in reviewing the potential environmental effects of Starship launches.
FAA review withstands legal challenge
The lawsuit centered on whether the FAA properly assessed the impact of SpaceX’s operations on endangered wildlife, including ocelots, jaguarundis, and Kemp’s Ridley sea turtles, as noted in a report from The Guardian. The plaintiffs argued that noise, light pollution, and construction activity degraded the surrounding habitat, which also serves as nesting grounds for threatened shorebirds.
The lawsuit cited SpaceX’s April 2023 Starship test, which destroyed its launchpad and scattered debris across a large area. The blast reportedly ignited a grassfire and damaged wildlife habitats, including a bobwhite quail nest.
Judge Carl Nichols, for his part, ruled that the FAA had satisfied its obligation“to take a hard look at the effects of light on nearby wildlife.” The decision effectively cleared a regulatory hurdle for SpaceX, which has been working to expand Starship launch activity at its Boca Chica facility.
A continued ramp
SpaceX continues to scale its operations nationwide. Beyond Starship, the company is also seeking approval to nearly double Falcon rocket launches from Vandenberg Space Force Base in California, from 50 annually to 95.
Former President Trump has also shared his intention to increase U.S. launch capacity, setting a target for substantial growth by 2030. Considering that SpaceX is by far the world’s dominant launch provider, Trump’s support for more launches will likely benefit the private space company.
For now, at least, the ruling should allow continued expansion at a time when Starship remains central to long-term goals such as Mars missions and NASA’s Artemis program.
Elon Musk
SpaceX to expand Central Texas facility with $8M Bastrop project
Bastrop is already the site of several Elon Musk-led ventures.

SpaceX is set to expand its presence in Central Texas with an $8 million project to enlarge its Bastrop facility, as per state filings.
The 80,000-square-foot addition, which is scheduled to begin construction on September 24 and wrap in early January 2026, was registered with the Texas Department of Licensing and Regulation and initially reported by My San Antonio.
New investment
Bastrop is already the site of several Elon Musk-led ventures. The upcoming expansion will extend SpaceX’s office at 858 FM 1209, near Starlink’s operations and The Boring Company’s facilities. Just down the road, X is housed in the Hyperloop Plaza at 865 FM 1209.
SpaceX’s expansion reflects a steady buildup of resources in Bastrop since the private space firm established its presence in the area. The addition was praised by Tesla Governor Greg Abbott, who wrote on X that the expansion will “bring more jobs, innovations and will strengthen Starlink’s impact worldwide.”
State support
In March, Gov. Greg Abbott announced a $17.3 million state grant to SpaceX for an “expansion of their semiconductor research and development (R&D) and advanced packaging facility in Bastrop.” The project is expected to create more than 400 new jobs and generate over $280 million in capital investment.
Following the grant award, the Texas Governor also noted that SpaceX’s facility would be growing by 1 million square feet across three years to boost its Starlink program. SpaceX’s Starlink division is among the company’s fastest-growing segments, with the satellite internet system connecting over 6 million users and counting worldwide.
Recent reports have also indicated that Starlink has struck a deal with EchoStar to acquire 50 MHz of exclusive S-band spectrum in the United States and global Mobile Satellite Service (MSS) licenses. This should pave the way for Starlink to provide 5G coverage worldwide, even in remote areas.
Elon Musk
Starlink’s EchoStar spectrum deal could bring 5G coverage anywhere
The agreement strengthens Starlink’s ability to expand its mobile coverage worldwide.

SpaceX has struck a deal with EchoStar to acquire 50 MHz of exclusive S-band spectrum in the United States and global Mobile Satellite Service (MSS) licenses, paving the way for its next-generation Starlink Direct to Cell constellation.
The agreement strengthens Starlink’s ability to expand its mobile coverage worldwide. With the upgraded system, SpaceX aims to deliver full 5G connectivity to unmodified cell phones and eliminate mobile dead zones worldwide.
Expanding mobile coverage
Starlink’s Direct to Cell service was first launched in early 2024 with satellites designed to connect directly to standard LTE mobile devices. Within days of deployment, engineers demonstrated texting from unmodified phones, followed by video calling. Over the past 18 months, SpaceX has grown the system to more than 600 satellites, which now offer service across five continents. Today, Starlink Direct to Cell is considered the largest 4G coverage provider worldwide, connecting over 6 million users and counting, according to SpaceX in a post.
The constellation integrates with Starlink’s broader fleet of 8,000 satellites via a laser mesh network. Operating at 360 kilometers (224 miles) above Earth, the satellites connect directly to devices without hardware or firmware modifications. The system is already supporting messaging, video calls, navigation, social media apps, and IoT connectivity in remote areas.
Next-generation system
Through its new EchoStar spectrum acquisition, SpaceX plans to develop a second-generation constellation with far greater capacity. The upgraded satellites will leverage SpaceX-designed silicon and advanced phased array antennas to increase throughput by 20x per satellite and increase total system capacity by more than 100x. These enhancements are expected to support full 5G cellular connectivity in remote areas, with performance comparable to terrestrial LTE networks.
Partnerships with major mobile carriers remain central to Starlink’s expansion. Operators including T-Mobile in the United States, Rogers in Canada, KDDI in Japan, and Kyivstar in Ukraine are integrating Direct to Cell services for coverage in rural areas and during emergencies. The service has already provided critical communication during hurricanes, floods, and wildfires, enabling millions of SMS messages and emergency alerts to be delivered when ground networks were unavailable.
-
Elon Musk2 weeks ago
Tesla’s next-gen Optimus prototype with Grok revealed
-
News1 week ago
Tesla launches new Supercharger program that business owners will love
-
Elon Musk1 week ago
Tesla Board takes firm stance on Elon Musk’s political involvement in pay package proxy
-
News2 weeks ago
Tesla deploys Unsupervised FSD in Europe for the first time—with a twist
-
News2 weeks ago
Tesla explains why Robotaxis now have safety monitors in the driver’s seat
-
News2 weeks ago
Tesla is already giving Robotaxi privileges hours after opening public app
-
Elon Musk2 weeks ago
Elon Musk says Tesla will take Safety Drivers out of Robotaxi: here’s when
-
Elon Musk1 week ago
Elon Musk is setting high expectations for Tesla AI5 and AI6 chips