SpaceX
SpaceX’s Crew Dragon one step closer to human spaceflight after flawless launch
SpaceX has completed the first half of its critical Crew Dragon test flight, launching the brand new spacecraft into low Earth orbit (LEO) on the back of one of its workhorse Falcon 9 rockets. The rocket performed nominally, successfully sending the human-rated vehicle on its way towards the International Space Station (ISS).
Scheduled to dock with the ISS as early as 6 am EST (13:00 UTC) March 3rd, Crew Dragon will now face the real challenge of this demonstration mission, successfully operating in orbit and autonomously docking with the ISS. Along the way, SpaceX will be flight-testing a number of technologies and systems new to the company, while also providing reams of data that will help both SpaceX and NASA determine whether Crew Dragon performed as intended and is truly ready to carry astronauts into orbit.
https://twitter.com/_TomCross_/status/1101764440800878593
While this successful launch is a critical milestone for DM-1, Crew Dragon, SpaceX, and NASA, it’s hard to say there is anything particularly shocking about its successful completion. Including this launch, SpaceX has now successfully launched Falcon 9 42 times in a row since January 2017, including seven orbital launches and ISS missions with Cargo Dragon, a heavily proven spacecraft with 16 successful missions since its 2012 debut. Put simply, SpaceX has an incredibly dense volume of experience successfully launching, landing, recovering, and refurbishing orbital-class rockets and spacecraft, as well as a proven track record of success and an ability to confront and move past challenging vehicle failures.
Crew Dragon demo mission (DM-1) is set to launch early tomorrow morning, March 2, at 2:49 a.m. EST from Kennedy Space Center. What an absolutely breathtaking scene at LC-39A. #spacex #nasa #CrewDragon #falcon9 pic.twitter.com/T95wCumGzq
— Pauline Acalin (@w00ki33) March 1, 2019
Crew Dragon’s successful launch is no less of a major achievement, even if it was about as much of a known quantity as any other Falcon 9 mission. The real challenge ahead of the spacecraft is successfully demonstrating the efficacy of its design and operations in space, particularly while interacting and docking with the ISS. Prior to tomorrow morning, all SpaceX Dragons have berthed with the ISS, meaning that they effectively come up from underneath the ISS (a lower orbit), stop a few meters away, and are ‘grappled’ by a large robotic arm (known as Canadarm2) that also attaches the spacecraft to a docking port. If – at any point during the pre-berthing approach – Cargo Dragon were to lose control, the spacecraft would essentially fall back down the gravitational hill it had just climbed, a built-in abort that would nominally prevent the spacecraft from impacting the Station in most failure scenarios.
The launch of Crew Dragon demo (DM-1) as seen from the roof of NASA’s Vehicle Assembly Building. What a powerful and moving mission. Another step closer! #spacex #nasa #CrewDragon pic.twitter.com/aWIPtDcVir
— Pauline Acalin (@w00ki33) March 2, 2019
Crew Dragon, on the other hand, has been designed to dock with the ISS. Generally speaking, this means that the spacecraft will approach the Station side-on, as if it were a car accelerating faster than another car in the same ‘lane’. While there are many built-in points during the docking approach where Crew Dragon will halt all forward movement, the differing docking approach means that any loss of control or contact while on a vector towards the ISS could mean that it is unable to abort, significantly increasing the likelihood of an impact event in worst-case scenarios. While Crew Dragon is designed with extreme redundancy and fault-tolerance in mind, the stakes are definitively higher compared to Cargo Dragon.
Liftoff of Dragon 2 at 2:49am! SpaceX’s first flight of their new capsule preparing to take astronauts back to the International Space Station from American soil.
See the full launch gallery and support NASAspaceflight by subscribing to L2: https://t.co/whUFQd0FNU pic.twitter.com/TIhJxCSM8j
— Brady Kenniston (@TheFavoritist) March 2, 2019
Conscious of this fact, the new spacecraft will be tasked with completing a significant number of on-orbit maneuvers to verify nominal performance before allowing the autonomous vehicle to attempt a docking with the ISS. While that docking attempt is scheduled to occur as early as 6 am EST (13:00 UTC), live coverage – hosted by both NASA and SpaceX – will begin around 3:30 am EST (10:30 UTC) on Sunday, March 3rd. While these on-orbit webcasts can admittedly be rather dry compared to the thrill of launch, it will arguably be the most significant and mission-critical portion of Crew Dragon’s launch debut, alongside the spacecraft’s safe reentry and Atlantic Ocean landing and recovery. Follow along live at spacex.com/webcast.
Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
SpaceX shades airline for seeking contract with Amazon’s Starlink rival
SpaceX employees, including its CEO Elon Musk, shaded American Airlines on social media this past weekend due to the company’s reported talks with Amazon’s Starlink rival, Leo.
Starlink has been adopted by several airlines, including United Airlines, Qatar Airways, Hawaiian Airlines, WestJet, Air France, airBaltic, and others. It has gained notoriety as an extremely solid, dependable, and reliable option for airline travel, as traditional options frequently cause users to lose connection to the internet.
Many airlines have made the switch, while others continue to mull the options available to them. American Airlines is one of them.
A report from Bloomberg indicates the airline is thinking of going with a Starlink rival owned by Amazon, called Leo. It was previously referred to as Project Kuiper.
American CEO Robert Isom said (via Bloomberg):
“While there’s Starlink, there are other low-Earth-orbit satellite opportunities that we can look at. We’re making sure that American is going to have what our customers need.”
Isom also said American has been in touch with Amazon about installing Leo on its aircraft, but he would not reveal the status of any discussions with the company.
The report caught the attention of Michael Nicolls, the Vice President of Starlink Engineering at SpaceX, who said:
“Only fly on airlines with good connectivity… and only one source of good connectivity at the moment…”
CEO Elon Musk replied to Nicolls by stating that American Airlines risks losing “a lot of customers if their connectivity solution fails.”
American Airlines will lose a lot of customers if their connectivity solution fails
— Elon Musk (@elonmusk) December 14, 2025
There are over 8,000 Starlink satellites in orbit currently, offering internet coverage in over 150 countries and territories globally. SpaceX expands its array of satellites nearly every week with launches from California and Florida, aiming to offer internet access to everyone across the globe.
Currently, the company is focusing on expanding into new markets, such as Africa and Asia.
News
Tesla hints at Starlink integration with recent patent
“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”
Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.
The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”
Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.
Tesla has recently filed a US patent application on integrating RF transparent materials into the roof structure.
“facilitating clear communication with external devices and satellites”
Tesla fleet is getting @Starlink connectivity integration soon. LFG @Tesla @elonmusk… pic.twitter.com/bLa8YtPLd1
— Chansoo Byeon (@Chansoo) December 9, 2025
Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.
These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.
They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:
“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.
It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).
Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.
Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.
It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.
Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.
Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.








