Connect with us

News

SpaceX customer iSpace updates Falcon 9-launched Moon lander, rover plans

Published

on

Japanese commercial space company iSpace has provided an updated schedule for its first private missions to the Moon, both set to launch on Falcon 9 rockets and land on the Moon as early as 2021 and 2023.

iSpace’s goal is to understand and map lunar resources (particularly water ice) and eventually gather and process those materials into resources that could help enable far more ambitious lunar exploration, up to and including a partially self-sustaining lunar outpost capable of supporting astronauts. Known as Hakuto-R (“white rabbit” reboot), iSpace began as a team pursuing the Google Lunar XPRIZE before its cancelation in 2018 after several postponements pushed competing teams well past the prize deadline.

Despite the death of the Lunar XPRIZE, iSpace managed to not only survive but thrive in a more entrepreneurial environment. The company managed to convince several major investors of the potential value of commercial space exploration and became one of a select few spaceflight startups – certainly the only space resources startup – that has raised almost $100 million.

Relative to similar startups Planetary Resources (purchased by a blockchain company; effectively dead) and Deep Space Industries (acquired by Bradford Space), iSpace is in an unprecedentedly healthy position to realize its space resource ambitions.

NewSpace, OldProblems

One could likely climb to the Moon with nothing more than a printed stack of all the studies, analyses, white papers, and hollow promises ever published on the utilization of space-based resources, an ode to the simultaneous promise and pitfalls the idea poses. As many have discovered, developing the ability to acquire, refine, and sell space resources is one of the most long-lead problems in existence. Put another way, funding a space exploration company on the promise of (or income from) space resources is a bit like paying for a solid-gold ladder by selling the fruit you needed it to reach.

For such an enterprise to make economical sense, one must either have access to ladders that are cheaper than their weight in gold or be able to sell the harvested fruit at breathtaking premiums. The point of this analogy is to illustrate just how challenging, expensive, and immature deep space exploration is relative to the possible resources currently within its grasp. There is also a bit of a circular aspect to space resource utilization: to sell the resources at the extreme premiums needed to sustain their existence, there must be some sort of established market for those resources – ready to purchase them the moment they’re available.

To build a market on space resources, one must already possess space resources to sell. This is the exact thing that government space agencies like NASA should develop, but entrenched and greedy corporate interests have effectively neutered NASA’s ability to develop technology that might transcend the need for giant, ultra-expensive, expendable rockets.

In-situ construction and resource utilization is the obvious draw, but it often happens to be the case that the company gathering the resources is the one most likely to need or want to use them.

The need to secure funding via investors – investors expecting some sort of return – is the biggest roadblock to space resource utilization. Really, the only conceivable way to sustainably raise funding for space resource acquisition is to already have a functional and sustainable company as a base. SpaceX is a prime example: the company hopes to fund the development of a sustainable city on Mars with income from its launch business and Starlink internet constellation.

A steel Starship on the Moon. (SpaceX)
SpaceX is focused on Mars but still has some interest in lunar activities, pending customer interest and demand. (SpaceX)

Ambitious plans, solid funding

Given all of the above, it’s extremely impressive that iSpace has managed to raise nearly $100M in just a few years and has done so without the involvement of one or several ultra-wealthy angel investors. Of course, it must still be acknowledged that the cost of iSpace’s longer-term ambitions can easily be measured in the tens of billions of dollars, but given an extremely lean operation and rapid success, $100M could plausibly fund at least one or two serious lunar landing attempts.

In the realm of flight tests, iSpace previously planned to perform a demonstration launch in 2020, in which a simplified lander would be used to orbit the Moon but not land. In the last year or so, the company has decided to entirely forgo that orbital test flight and instead plans to attempt a Moon landing on its first orbital flight, scheduled to launch on Falcon 9 no earlier than (NET) 2021. If successful, this inaugural landing would be followed as few as two years later (2023) by a lander and a lunar rover. Assuming a successful second landing, iSpace would move to ramp its production rates, launch cadence, and general ambitions, prospecting all over the Moon in 5-10+ separate lander missions.

iSpace is particularly interested in exploring the Moon’s caverns, lava tubes, sinkholes, and skylights, all shielded from sunlight and thus prime locations for water ice. (iSpace)

iSpace will still face the brick wall that all space resource companies eventually run into. Even if the company can successfully demonstrate a Moon landing and resource prospecting, it will need additional funding (and thus a commercially sustainable plan to sell investors on) to continue work and eventually, just maybe, get to a point where selling space-based resources can become a sustainable source of income.

Regardless of iSpace’s long-term business strategy, the early 2020s will be jam-packed with attempted commercial lunar landings, including Hakuto-R, Astrobotic, Intuitive Machines, and perhaps several other companies’ attempts. By all appearances, the exceptional mix of high performance and low cost offered by SpaceX’s Falcon 9 rocket will serve as a major enabler, allowing companies to put most of their funding into their landers instead of launch costs.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla lands regulatory green light for Robotaxi testing in new state

This will be the third state in total where Tesla is operating Robotaxi, following Austin and California.

Published

on

Credit: Tesla

Tesla has landed a regulatory green light to test its Robotaxi platform in a new state, less than three months after the ride-hailing service launched in Texas.

Tesla first launched its driverless Robotaxi suite in Austin, Texas, back on June 22. Initially offering rides to a small group of people, Tesla kept things limited, but this was not to be the mentality for very long.

It continued to expand the rider population, the service area, and the vehicle fleet in Austin.

The company also launched rides in the Bay Area, but it does use a person in the driver’s seat to maintain safety. In Austin, the “Safety Monitor” is present in the passenger’s seat during local rides, and in the driver’s seat for routes that involve highway driving.

Tesla is currently testing the Robotaxi platform in other states. We reported that it was testing in Tempe, Arizona, as validation vehicles are traveling around the city in preparation for Robotaxi.

Tesla looks to make a big splash with Robotaxi in a new market

Tesla is also hoping to launch in Florida and New York, as job postings have shown the company’s intention to operate there.

However, it appears it will launch in Nevada before those states, as the company submitted its application to obtain a Testing Registry certification on September 3. It was processed by the state’s Department of Motor Vehicles Office of Business Licensing on September 10.

It will then need to self-certify for operations, essentially meaning they will need to comply with various state requirements.

This will be the third state in total where Tesla is operating Robotaxi, following Austin and California.

CEO Elon Musk has stated that he believes Robotaxi will be available to at least half of the U.S. population by the end of the year. Geographically, Tesla will need to make incredible strides over the final four months of the year to achieve this.

Continue Reading

News

Tesla is improving this critical feature in older vehicles

Published

on

Credit: Tesla

Tesla is set to improve a critical feature that has not been present in older vehicles with a new update.

Tesla vehicles feature a comprehensive suite of driver assistance features, some of which aid in driving itself, while others support the vehicle’s surroundings.

One of those features is that of Driver Visualization, and with the rollout of a new update, owners of Intel-based Tesla vehicles are receiving an upgrade that will come with a simple software update.

Tesla plans to use Unreal Engine for driver visualization with crazy upgrade

The update will provide new visualizations while Intel-based vehicles are in reverse, a feature that was not previously available, but will be with Software Update 2025.32.2.

The improvement was spotted by Not a Tesla App via TheBeatYT_evil:

Previously, vehicles Tesla built were equipped with Intel-based processors, but newer cars feature the AMD chip, which is capable of rendering these visualizations as they happen. They were capable of visualizations when driving forward, but not in reverse, which is what this change resolves.

It is a good sign for those with Intel-based vehicles, as Tesla seems to be paying attention to what those cars are not capable of and improving them.

This was an undocumented improvement associated with this particular update, so you will not find any mention of it in the release notes that Tesla distributes with each update.

Continue Reading

News

Tesla looks to make a big splash with Robotaxi in a new market

Tesla has been transparent that it is prioritizing safety, but it believes it can expand to basically any geographical location within the United States and find success with its Robotaxi suite. CEO Elon Musk said it could be available to half of the U.S. population by the end of the year.

Published

on

Credit: Joe Tegtmeyer | X

Tesla is looking to make a big splash with Robotaxi in a new market, as the company was spotted testing validation vehicles in one region where it has not yet launched its ride-hailing service.

After launching Robotaxi in Austin in late June, Tesla followed up with a relatively quick expansion to the Bay Area of California. Both service areas are operating with a geofence that is expansive: In Texas, it is 173 square miles, while in the Bay Area, it is roughly 400 square miles.

Tesla has been transparent that it is prioritizing safety, but it believes it can expand to basically any geographical location within the United States and find success with its Robotaxi suite. CEO Elon Musk said it could be available to half of the U.S. population by the end of the year.

There have been plenty of reports out there that have speculated as to where Tesla would land next to test Robotaxi, and Nevada, Florida, Arizona, and New York have all been in the realm of possibility. These regions will need to approve Tesla for regulatory purposes before Robotaxi can officially operate.

Tesla is still testing and performing validation in several regions, and in Tempe, Arizona, things are moving forward as a Model Y with a LiDAR rig was spotted performing ground truth for the platform:

With the LiDAR unit, many followers of the self-driving and autonomy space might wonder why Tesla uses these apparatuses during validation, especially considering the company’s stance and vision-based approach.

LiDAR is used for “ground truth,” which is basically a solidification or confirmation of what the cameras on the car are seeing. It is a great way to essentially confirm the accuracy of the vision-based suite, and will not be used on Robotaxi units used within the ride-hailing suite.

The Robotaxi platform was made available to the public earlier this month, as Tesla launched its app for iOS users.

Tesla Robotaxi app download rate demolishes Uber, Waymo all-time highs

Downloading the app allows you to join a waitlist, giving you the opportunity to utilize and test the Robotaxi platform in either Austin or the Bay Area.

Continue Reading

Trending