Connect with us

News

SpaceX customer iSpace updates Falcon 9-launched Moon lander, rover plans

Published

on

Japanese commercial space company iSpace has provided an updated schedule for its first private missions to the Moon, both set to launch on Falcon 9 rockets and land on the Moon as early as 2021 and 2023.

iSpace’s goal is to understand and map lunar resources (particularly water ice) and eventually gather and process those materials into resources that could help enable far more ambitious lunar exploration, up to and including a partially self-sustaining lunar outpost capable of supporting astronauts. Known as Hakuto-R (“white rabbit” reboot), iSpace began as a team pursuing the Google Lunar XPRIZE before its cancelation in 2018 after several postponements pushed competing teams well past the prize deadline.

Despite the death of the Lunar XPRIZE, iSpace managed to not only survive but thrive in a more entrepreneurial environment. The company managed to convince several major investors of the potential value of commercial space exploration and became one of a select few spaceflight startups – certainly the only space resources startup – that has raised almost $100 million.

Relative to similar startups Planetary Resources (purchased by a blockchain company; effectively dead) and Deep Space Industries (acquired by Bradford Space), iSpace is in an unprecedentedly healthy position to realize its space resource ambitions.

NewSpace, OldProblems

One could likely climb to the Moon with nothing more than a printed stack of all the studies, analyses, white papers, and hollow promises ever published on the utilization of space-based resources, an ode to the simultaneous promise and pitfalls the idea poses. As many have discovered, developing the ability to acquire, refine, and sell space resources is one of the most long-lead problems in existence. Put another way, funding a space exploration company on the promise of (or income from) space resources is a bit like paying for a solid-gold ladder by selling the fruit you needed it to reach.

For such an enterprise to make economical sense, one must either have access to ladders that are cheaper than their weight in gold or be able to sell the harvested fruit at breathtaking premiums. The point of this analogy is to illustrate just how challenging, expensive, and immature deep space exploration is relative to the possible resources currently within its grasp. There is also a bit of a circular aspect to space resource utilization: to sell the resources at the extreme premiums needed to sustain their existence, there must be some sort of established market for those resources – ready to purchase them the moment they’re available.

To build a market on space resources, one must already possess space resources to sell. This is the exact thing that government space agencies like NASA should develop, but entrenched and greedy corporate interests have effectively neutered NASA’s ability to develop technology that might transcend the need for giant, ultra-expensive, expendable rockets.

In-situ construction and resource utilization is the obvious draw, but it often happens to be the case that the company gathering the resources is the one most likely to need or want to use them.

The need to secure funding via investors – investors expecting some sort of return – is the biggest roadblock to space resource utilization. Really, the only conceivable way to sustainably raise funding for space resource acquisition is to already have a functional and sustainable company as a base. SpaceX is a prime example: the company hopes to fund the development of a sustainable city on Mars with income from its launch business and Starlink internet constellation.

A steel Starship on the Moon. (SpaceX)
SpaceX is focused on Mars but still has some interest in lunar activities, pending customer interest and demand. (SpaceX)

Ambitious plans, solid funding

Given all of the above, it’s extremely impressive that iSpace has managed to raise nearly $100M in just a few years and has done so without the involvement of one or several ultra-wealthy angel investors. Of course, it must still be acknowledged that the cost of iSpace’s longer-term ambitions can easily be measured in the tens of billions of dollars, but given an extremely lean operation and rapid success, $100M could plausibly fund at least one or two serious lunar landing attempts.

In the realm of flight tests, iSpace previously planned to perform a demonstration launch in 2020, in which a simplified lander would be used to orbit the Moon but not land. In the last year or so, the company has decided to entirely forgo that orbital test flight and instead plans to attempt a Moon landing on its first orbital flight, scheduled to launch on Falcon 9 no earlier than (NET) 2021. If successful, this inaugural landing would be followed as few as two years later (2023) by a lander and a lunar rover. Assuming a successful second landing, iSpace would move to ramp its production rates, launch cadence, and general ambitions, prospecting all over the Moon in 5-10+ separate lander missions.

iSpace is particularly interested in exploring the Moon’s caverns, lava tubes, sinkholes, and skylights, all shielded from sunlight and thus prime locations for water ice. (iSpace)

iSpace will still face the brick wall that all space resource companies eventually run into. Even if the company can successfully demonstrate a Moon landing and resource prospecting, it will need additional funding (and thus a commercially sustainable plan to sell investors on) to continue work and eventually, just maybe, get to a point where selling space-based resources can become a sustainable source of income.

Regardless of iSpace’s long-term business strategy, the early 2020s will be jam-packed with attempted commercial lunar landings, including Hakuto-R, Astrobotic, Intuitive Machines, and perhaps several other companies’ attempts. By all appearances, the exceptional mix of high performance and low cost offered by SpaceX’s Falcon 9 rocket will serve as a major enabler, allowing companies to put most of their funding into their landers instead of launch costs.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla arsonist who burned Cybertruck sees end of FAFO journey

The man has now reached the “Find Out” stage.

Published

on

Credit: U.S. Attorney’s Office, District of Arizona

A Mesa, Arizona man has been sentenced to five years in federal prison for setting fire to a Tesla location and vehicle in a politically motivated arson attack, federal prosecutors have stated. 

The April 2025 incident destroyed a Tesla Cybertruck, endangered first responders, and triggered mandatory sentencing under federal arson laws.

A five-year sentence

U.S. District Judge Diane J. Humetewa sentenced Ian William Moses, 35, of Mesa, Arizona, to 5 years in prison followed by 3 years of supervised release for maliciously damaging property and vehicles by means of fire. Moses pleaded guilty in October to all five counts brought by a federal grand jury. Restitution will be determined at a hearing scheduled for April 13, 2026.

As per court records, surveillance footage showed Moses arriving at a Tesla store in Mesa shortly before 2 a.m. on April 28, 2025, carrying a gasoline can and backpack. Investigators stated that he placed fire starter logs near the building, poured gasoline on the structure and three vehicles, and ignited the fire. The blaze destroyed a Tesla Cybertruck. Moses fled the scene on a bicycle and was arrested by Mesa police about a quarter mile away, roughly an hour later.

Advertisement
-->

Authorities said Moses was still wearing the same clothing seen on camera at the time of his arrest and was carrying a hand-drawn map marking the dealership’s location. Moses also painted the word “Theif” on the walls of the Tesla location, prompting jokes from social media users and Tesla community members. 

The “Finding Out” stage

U.S. Attorney Timothy Courchaine noted that Moses’ sentence reflects the gravity of his crime. He also highlighted that arson is never acceptable. 

“Arson can never be an acceptable part of American politics. Mr. Moses’ actions endangered the public and first responders and could have easily turned deadly. This five-year sentence reflects the gravity of these crimes and makes clear that politically fueled attacks on Arizona’s communities and businesses will be met with full accountability.”

Maricopa County Attorney Rachel Mitchell echoed the same sentiments, stating that regardless of Moses’ sentiments towards Elon Musk, his actions are not defensible. 

“This sentence sends a clear message: violence and intimidation have no place in our community. Setting fire to a business in retaliation for political or personal grievances is not protest, it is a crime. Our community deserves to feel safe, and this sentence underscores that Maricopa County will not tolerate political violence in any form.”

Advertisement
-->
Continue Reading

News

Tesla says its Texas lithium refinery is now operational and unlike anything in North America

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

Published

on

Credit: Tesla/YouTube

Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

A first-of-its-kind lithium refining process

In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.

According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.

Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted. 

Advertisement
-->

Musk calls the facility the largest lithium refinery in America

The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational. 

Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”

By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.

Advertisement
-->
Continue Reading

News

Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening

Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot

Published

on

Credit: Tesla/YouTube

Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.

Calacanis’ comments were shared publicly on X, and they were quite noteworthy.

The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.

“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,”  he noted.

The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.

Advertisement
-->

“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said. 

While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.

Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.

Continue Reading