News
SpaceX awarded double-satellite Falcon 9 launch contract, sixth win of 2019
SpaceX continues to reap the benefits of strong market demand for Falcon 9’s combination of affordability and performance with an announcement that the company has won its sixth launch contract in 2019.
Announced on July 3rd by Space Norway and several other stakeholders, a SpaceX Falcon 9 is scheduled to launch an identical pair of communications satellites to an unusual orbit no earlier than late 2022. Northrop Grumman will build both ~2000-kilogram (4400 lb) spacecraft.
Known officially as the Arctic Satellite Broadband Mission (ASBM), Space Norway has partnered with satellite operator Inmarsat and the Norwegian Ministry of Defense to provide connectivity to civilian and military users in and around the Arctic. Additionally, the US Air Force will have its own communications payloads on both satellites, rounding out the extremely busy mission.
The two ASBM satellites will be built around the GEOStar-3 bus, originally introduced by Orbital Sciences Corporation (acquired by Alliant Techsystems to become Orbital ATK, then acquired by Northrop Grumman to become Northrop Grumman Innovation Systems). Each satellite will produce 6 kW via solar arrays, while the GEOStar-3 bus can support all-chemical propulsion, all-electric propulsion, or a hybrid approach. Falcon 9’s 2022 launch of ASBM will mark the first time that GEOSat-3 satellites have utilized their stacking capability, with both spacecraft heading to orbit on the same rocket.

Perhaps the most unique aspect of the ASBM mission is the extremely unusual orbit Falcon 9 will be launching them to. According to info published by Space Norway on June 24th, they will be targeting a final orbit roughly comparable to the Molniya orbits originally used by Soviet Union military communications satellites as early as the mid-1960s. ASBM’s orbits will also be highly elliptical and approximately polar, with an apogee of 43,000 km (26,700 mi) and a perigee of 8000 km (5000 mi). Traditionally, Molniya orbits had much lower perigees, but the higher perigee of ASBM satellites should allow them to operate indefinitely without having to worry about atmospheric drag lowering their orbits.
The ASBM satellites will reach their perigee somewhere over Antarctica and will generally power down their communications hardware until they are back over the Arctic. By having two satellites, the other satellite will be able to guarantee continuous coverage while its twin is out of contact.

With an overall payload weight around 4000 kg (8800 lb), it’s likely that Falcon 9 has the performance necessary to place the spacecraft in a transfer orbit (likely ~300 km by 43,000 km) and safely land on a SpaceX drone ship, in which case the satellites would raise their perigees themselves. It’s unlikely that a recoverable Falcon 9 launch has enough performance to send the satellites directly to their final orbits, although an expendable mission might be able to do it.
Regardless, this launch contract is yet another sign that SpaceX will continue to have strong demand for Falcon 9 launch services in the coming years. ASBM is the sixth win for SpaceX just in the last four or so months, beginning in February with three US military contracts, followed by a NASA contract in April and a Korean mission in June.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Tesla owners surpass 8 billion miles driven on FSD Supervised
Tesla shared the milestone as adoption of the system accelerates across several markets.
Tesla owners have now driven more than 8 billion miles using Full Self-Driving Supervised, as per a new update from the electric vehicle maker’s official X account.
Tesla shared the milestone as adoption of the system accelerates across several markets.
“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average.
The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.
At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.
Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.
As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.
During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.
Elon Musk
The Boring Company’s Music City Loop gains unanimous approval
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.
The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown.
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.
Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.
The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post.
Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.
“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said.
The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.
Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”
Elon Musk
Tesla announces crazy new Full Self-Driving milestone
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.
The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.
On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.
Tesla owners have now driven >8 billion miles on FSD Supervisedhttps://t.co/0d66ihRQTa pic.twitter.com/TXz9DqOQ8q
— Tesla (@Tesla) February 18, 2026
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.
Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.
Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.
This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.
The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.