Connect with us

News

SpaceX Dragon spacecraft caught by robotic space station arm for the last time

SpaceX's Cargo Dragon spacecraft has been caught by the International Space Station's robotic arm for the 20th and final time. (NASA)

Published

on

On March 9th, SpaceX’s CRS-20 Cargo Dragon completed an uneventful journey to the International Space Station (ISS), where the spacecraft was successfully captured giant robotic arm for the last time.

Barring several major surprises, Dragon’s March 9th capture was the last time a SpaceX spacecraft berthed with a space station for the foreseeable future – possibly forever. Referring to the process of astronauts manually catching visiting vehicles and installing them on an airlock with a giant, robotic arm, berthing is a much younger technology than docking and was developed as an alternative for a few particular reasons. Perhaps most importantly, the Common Berthing Mechanism (CBM) ports used by Cargo Dragon, Cygnus, and HTV spacecraft are more than 60% wider than standard docking ports. In other words, spacecraft that berth can transport substantially larger pieces of cargo to and from the space station.

More significantly, however, the CBM standard came about in large part due to the decision to assemble the ISS out of 16 pressurized segments, each separately launched into orbit. Measuring about 1.25m (4.2 ft) wide, the CBM ports that connect most of the space station’s 16 livable segments make the ISS far more practical for the astronauts that crew it, while also allowing for larger hardware to be moved between each module. With Crew Dragon, design requirements meant that SpaceX had to move from berthing to docking, a trait SpaceX thus carried over when it chose to base its Cargo Dragon replacement on a lightly-modified Crew Dragon design.

Cargo Dragon was captured by the space station’s robotic arm on March 9th (above), likely the last time a SpaceX spacecraft has berthed with the ISS. (NASA/SpaceX)

Now verging on routine, Cargo Dragon capsule C112 began its final approach to the International Space Station on March 9th, pausing at set keep-out zones while SpaceX operators waited for NASA and ISS approval to continue. After several stops, Dragon arrived at the last hold point – some 10m (33 ft) away from the station – and NASA astronaut Jessica Meir manually steered Canadarm2 to a successful capture, quite literally grabbing Dragon with a sort of mechanical hand.

At that point, Dragon – like a large ship arriving in port with the help of tugboats – is in the hands of external operators. At the ISS, Canadarm2 essentially flips itself around with Dragon still attached, carefully and slowly mating the spacecraft with one of the station’s free berthing ports. Unlike docking ports, the active part of a berthing port is located on the station’s receiving end, where electromechanical latches and bolts permanently secure the spacecraft to the station and ensure a vacuum seal.

Finally, once berthing is fully complete, ISS astronauts can manually open Dragon’s hatch, giving them access to the two or so metric tons (~4000 lb) of cargo typically contained within. All told, the process of berthing is relatively intensive and expensive in terms of the amount of time station astronauts and NASA ground control must spend to complete a single resupply mission. From start to finish, excluding training, berthing takes a crew of two station astronauts some 9-12 hours of near-continuous work from spacecraft approach to hatch open.

Advertisement
-->
Crew Dragon approaches the ISS during its orbital launch debut on March 3rd, 2019. (NASA)

One definite benefit of the docking approach Crew Dragon and Cargo Dragon 2 will use is just how fast it is compared to berthing. Because docking is fundamentally autonomous and controlled by the spacecraft instead of the station, it significantly reduces the workload placed on ISS astronauts. Crew members must, of course, remain vigilant and pay close attention during the critical approach period, particularly with uncrewed Cargo Dragon 2 spacecraft. However, the assumption is always that the spacecraft will independently perform almost all tasks related to docking, short of actually offloading cargo and crew.

For now, CRS-20 will likely be SpaceX’s last uncrewed NASA cargo mission for at six months. CRS-21 – Cargo Dragon 2’s launch debut – is currently scheduled no earlier than (NET) Q4 2020. Nevertheless, Crew Dragon’s next launch – also its astronaut launch debut – could lift off as early as May 2020, just two months from now. With both SpaceX’s crew and cargo missions soon to consolidate around a single spacecraft, the odds are good that Dragon 2 will wind up flying far more than Dragon 1, and the start of its increasingly common launches is just around the corner.

Cargo Dragon 1’s final space station approach and berthing, in photos. (NASA)

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

Published

on

Credit: @BLKMDL3/X

Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD). 

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

10 billion miles of training data

Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly. 

“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote. 

Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles. 

Advertisement
-->

FSD’s total training miles

As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program. 

The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”

Continue Reading

News

Tesla earns top honors at MotorTrend’s SDV Innovator Awards

MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Published

on

Credit: Tesla China

Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.

As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Tesla leaders and engineers recognized

The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.

Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.

Tesla’s software-first strategy

While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.

Advertisement
-->

This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.

Continue Reading

Elon Musk

Judge clears path for Elon Musk’s OpenAI lawsuit to go before a jury

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

A U.S. judge has ruled that Elon Musk’s lawsuit accusing OpenAI of abandoning its founding nonprofit mission can proceed to a jury trial. 

The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder. These claims are directly opposed by OpenAI.

Judge says disputed facts warrant a trial

At a hearing in Oakland, U.S. District Judge Yvonne Gonzalez Rogers stated that there was “plenty of evidence” suggesting that OpenAI leaders had promised that the organization’s original nonprofit structure would be maintained. She ruled that those disputed facts should be evaluated by a jury at a trial in March rather than decided by the court at this stage, as noted in a Reuters report.

Musk helped co-found OpenAI in 2015 but left the organization in 2018. In his lawsuit, he argued that he contributed roughly $38 million, or about 60% of OpenAI’s early funding, based on assurances that the company would remain a nonprofit dedicated to the public benefit. He is seeking unspecified monetary damages tied to what he describes as “ill-gotten gains.”

OpenAI, however, has repeatedly rejected Musk’s allegations. The company has stated that Musk’s claims were baseless and part of a pattern of harassment.

Advertisement
-->

Rivalries and Microsoft ties

The case unfolds against the backdrop of intensifying competition in generative artificial intelligence. Musk now runs xAI, whose Grok chatbot competes directly with OpenAI’s flagship ChatGPT. OpenAI has argued that Musk is a frustrated commercial rival who is simply attempting to slow down a market leader.

The lawsuit also names Microsoft as a defendant, citing its multibillion-dollar partnerships with OpenAI. Microsoft has urged the court to dismiss the claims against it, arguing there is no evidence it aided or abetted any alleged misconduct. Lawyers for OpenAI have also pushed for the case to be thrown out, claiming that Musk failed to show sufficient factual basis for claims such as fraud and breach of contract.

Judge Gonzalez Rogers, however, declined to end the case at this stage, noting that a jury would also need to consider whether Musk filed the lawsuit within the applicable statute of limitations. Still, the dispute between Elon Musk and OpenAI is now headed for a high-profile jury trial in the coming months.

Continue Reading