Connect with us

News

SpaceX CEO Elon Musk forecasts a dozen Starship launches next year

Published

on

CEO Elon Musk has provided a small update on SpaceX’s next-generation Starship rocket in a brief statement to and Q&A with the board of the US National Academies of Science, Engineering, and Medicine.

While it’s now been more than two years since Musk last gave a proper presentation on the Starship program, a number of excellent questions from board members still managed to extract a handful of new details about the fully reusable rocket, which the SpaceX CEO says aims to “be a generalized transport mechanism for the [entire] solar system.” According to Musk, though, the most pressing near-term issues facing SpaceX are more down to Earth.

https://www.youtube.com/watch?v=rLydXZOo4eA

Reiterated several times in his comments to the National Academies, Musk says that the current limiting factor for Starship is securing regulatory approvals from the FAA for the rocket’s first orbital test flights, which SpaceX and Musk initially hoped would begin as early as mid-2021. Targets from July to November 2021 have since come and gone, while SpaceX has only begun to make concerted progress towards Starship’s first orbital launch in the last two or so months. Almost two months after its first rollout, Starship S20 – the first orbital-class prototype – began integrated testing, completing ambient and cryogenic proof tests in late September and its first Raptor preburner and static fire tests in the second half of October.

Most recently, after almost a month spent inactive at SpaceX’s Starbase test facilities, Starship S20 fired up all six of its Raptor engines – the first test of its kind and a major milestone for the program. Save for the completion of some relatively simple closeout tasks, Starship S20 is now more or less qualified for flight after its successful static fire. That leaves Super Heavy Booster 4 (B4) – the first stage meant to carry Ship 20 into space – up next on SpaceX’s South Texas testing docket after almost four agonizing months spent sitting, untested, at various Starbase facilities.

Musk says that SpaceX preparing to complete “a bunch of tests in December” with the implication that those tests likely include the first full Super Heavy wet dress rehearsal (WDR) with thousands of tons of live propellant and the first several booster static fire tests. Recently refitted with 29 Raptor engines for the third time in four months, it appears that SpaceX is finally close to finishing Super Heavy B4 to a point that will allow the booster to begin integrated testing. Through Super Heavy B3, which completed testing this summer, SpaceX thankfully already knows that the basic booster design is a structurally sound pressure vessel with plumbing and systems capable of surviving a three-Raptor static fire.

Super Heavy B3 completed a very limited test campaign in July 2021. (SpaceX)

Still, that’s barely more than 10% of the total number of engines Super Heavy will need operational to send Starship to orbit. After months at the pad, SpaceX is finally closing out Booster 4’s aft section and installing a basic heat shield around its 29 Raptor engines, which will produce up to ~5400 metric tons (~12M lbf) of thrust at liftoff – more than any other rocket in history. Following Starship S20’s recent success, SpaceX has now fired six Raptors simultaneously and in close proximity without issue. However, Super Heavy B4 will have to fire 29 engines packed into roughly the same amount of space. No other liquid rocket stage in history has a more densely-packed thrust section, averaging at least 85 tons of thrust per square meter (~125 psi) of available engine space.

It’s thus likely that SpaceX will split Super Heavy B4’s first static fire campaign into several different parts, possibly involving seperate tests of the center cluster of nine Raptor Center (RC) engines and outer ring of 20 Raptor Boost (RB) engines before firing up all 29 together. Even if that testing is completed without issue on the first attempts, SpaceX will still likely want to perform a full wet dress rehearsal – and possibly even another 29-engine static fire – with Ship 20 installed on top of Booster 4.

Musk also believes that Starbase’s first orbital launch site will be complete as early as “later this month” – essential for full booster testing. Once all testing is complete, Musk says Starship, Super Heavy, and Starbase should be ready for their first orbital launch attempt as early as January or February 2022. Of course, that launch is entirely contingent upon FAA environmental approval and launch licensing, the former still incomplete and the latter unable to proceed until the former is complete. If the FAA reaches a favorable conclusion, meets its recently-announced target of December 31st to complete Starbase’s environmental review, and grants SpaceX a new launch license just days or a few weeks later, a January-February launch isn’t out of the question.

Looking further into 2022, Musk also revealed that he hopes SpaceX will complete “a dozen [Starship] launches” next year – incredibly ambitious by any measure. There isn’t a rocket in history that’s achieved double-digit launches in the same year as its debut. More importantly, even if the FAA environmental review SpaceX is in the middle of ends with the best possible outcome for Starship, it limits the company to either 3, 5, or 8 (it’s somewhat ambiguous) orbital launch attempts per year. Still, even a ‘mere’ three orbital Starship launch attempts in 2022 would be an incredible acheivement for SpaceX – let alone five, or Musk’s forecast of a dozen.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Continue Reading

Elon Musk

Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk

The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.

Published

on

Credit: xAI

Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.

Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.

SpaceX xAI merger

As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.

Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy. 

Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.

AI and space infrastructure

A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.

xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.

Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future. 

Continue Reading