News
SpaceX's Elon Musk says Starlink user antennas will be like "UFOs on a stick"
SpaceX CEO Elon Musk has teased the first detailed description of the Starlink antennas (“user terminals”) customers will need to connect to the massive satellite internet constellation, revealing a few new and unexpected details about the critical hardware.
Although nearly all public focus is currently (and understandably) on the production and launch of Starlink satellites themselves, that perspective actually glosses over a second element of the constellation that is at least as important. Starlink, after all, is designed to delivered high-speed, low-latency broadband internet to customers around the world, and that service will not just magically appear in the houses of interested consumers. Similar to satellite TV, customers will gain access to their Starlink internet service with an antenna that will have to be installed somewhere on or around the premises.
The challenge that SpaceX faces with the grounded side of Starlink is that – unlike the geostationary satellites that provide satellite TV – satellites in low Earth orbit (LEO) are visible from a specific point on the ground for just a handful of minutes each. Whereas satellite TV dishes simply need to be pointed at one unmoving spot in the sky, Starlink ground antennas will need to constantly change where they are pointed (or at least track constantly-moving and changing satellites) and do so seamlessly and with incredible reliability.
A step further and even more importantly, while SpaceX unequivocally needs to make its Starlink user terminals extremely capable, simple, and reliable, it will also need to find a way to mass-produce millions (ultimately tens to hundreds of millions) of units and keep the cost to consumers unprecedentedly low. At least before Musk’s January 7th, 2020 comment, it was believed that Starlink user terminals would have to rely almost entirely on high-performance phased-array antennas, referring to antennas that are steered electronically – i.e. without physically moving.
100% phased-array steering would likely result in the best possible user terminal from the standpoint of reliability and performance. However, full phased-array antennas – while making rapid progress – are still extremely expensive to manufacture compared to more basic alternatives, meaning that it could be an immense challenge – possibly much harder than building and launching Starlink satellites themselves – to mass-produce affordable user terminals under that paradigm. It’s possible that SpaceX has actually come to the same conclusion and is choosing to compromise with its first-generation user terminals, prioritizing time to market and cost per unit at the expense of peak performance and optimal reliability.
Competitor OneWeb may actually have a step up on SpaceX on that front, having reportedly already made great progress developing an exceptionally cheap flat-panel phased-array antenna capable of at least decent throughput (10-50 Mbps). On January 7th, Musk revealed that the current iteration of Starlink user terminals look like a “thin, flat, round UFO on a stick” and features “motors to self-adjust [and ensure it’s at the] optimal angle to view [the] sky.”
The latter tidbit came as a bit of a surprise, given that nearly all cutting-edge phased-array antennas in development feature flat-panel designs and mounting hardware and pointedly avoid mechanical steering – one of the great benefits of phased arrays. It’s ultimately unclear what purpose a mechanical pointing motor would serve on a Starlink user terminal. If the terminal is centered around a true phased-array antenna, mechanical steering would be an almost vestigial addition. However, it’s possible that SpaceX has found a way to hybridize electronic (phased-array) and mechanical steering to produce user terminals that are exceptionally cheap and high-performance at the cost of a reliability risk (moving parts).
Ultimately, it looks like we will find out much sooner than later how exactly SpaceX’s Starlink user terminals work, among other details. Musk says that Starlink will be able to start serving customers in Canada and the Northern US with as few as four additional Starlink launches, meaning that some form of beta test could begin after Starlink V1 L6.
As of now, SpaceX has 1-2 more Starlink missions scheduled to launch later this month. If SpaceX averages two launches per month, Starlink could be serving its first customers as early as March or April 2020.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Elon Musk’s xAI brings 1GW Colossus 2 AI training cluster online
Elon Musk shared his update in a recent post on social media platform X.
xAI has brought its Colossus 2 supercomputer online, making it the first gigawatt-scale AI training cluster in the world, and it’s about to get even bigger in a few months.
Elon Musk shared his update in a recent post on social media platform X.
Colossus 2 goes live
The Colossus 2 supercomputer, together with its predecessor, Colossus 1, are used by xAI to primarily train and refine the company’s Grok large language model. In a post on X, Musk stated that Colossus 2 is already operational, making it the first gigawatt training cluster in the world.
But what’s even more remarkable is that it would be upgraded to 1.5 GW of power in April. Even in its current iteration, however, the Colossus 2 supercomputer already exceeds the peak demand of San Francisco.
Commentary from users of the social media platform highlighted the speed of execution behind the project. Colossus 1 went from site preparation to full operation in 122 days, while Colossus 2 went live by crossing the 1-GW barrier and is targeting a total capacity of roughly 2 GW. This far exceeds the speed of xAI’s primary rivals.
Funding fuels rapid expansion
xAI’s Colossus 2 launch follows xAI’s recently closed, upsized $20 billion Series E funding round, which exceeded its initial $15 billion target. The company said the capital will be used to accelerate infrastructure scaling and AI product development.
The round attracted a broad group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group. Strategic partners NVIDIA and Cisco also continued their support, helping xAI build what it describes as the world’s largest GPU clusters.
xAI said the funding will accelerate its infrastructure buildout, enable rapid deployment of AI products to billions of users, and support research tied to its mission of understanding the universe. The company noted that its Colossus 1 and 2 systems now represent more than one million H100 GPU equivalents, alongside recent releases including the Grok 4 series, Grok Voice, and Grok Imagine. Training is also already underway for its next flagship model, Grok 5.
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.