News
SpaceX CEO Elon Musk to present first Starship update since 2019 [webcast]
Barring surprises, SpaceX CEO Elon Musk remains on track to present the first major update on Starship’s development since September 2019 – almost two and a half years ago.
While it’s no longer clear that SpaceX will be able to stack Starship on top of Super Heavy in time for the fully-stacked rocket to serve as an imposing backdrop for the media event, Musk seemingly remains on track to update the world on the status of Starship development as early as 8pm CT (6pm PT, 9pm ET) on Thursday, February 10th (02:00 UTC 11 Feb). Assuming the event is similar to the SpaceX CEO’s first four major Starship presentations, it will be broadcast live to the world on the company’s YouTube channel.
Musk first revealed SpaceX’s detailed plans for a massive, fully-reusable Mars rocket in September 2016. At that point, the rocket – known as the Interplanetary Transport System (ITS) – was to be 12 meters (39 ft) in diameter, 122 meters (400 ft) tall, and made almost entirely out of carbon-fiber composites. In theory, it would have been able to launch up to 300 tons (660,000 lb) to low Earth orbit (LEO) – twice the payload of Saturn V, the next most capable rocket.
In 2017, SpaceX slightly pared back its ambition with a vehicle known as BFR, measuring 9m wide and 106m tall with about a third fewer Raptor engines and estimated performance of ~130 tons (285,000 lb) to LEO. In 2018, on top of announcing Japanese billionaire Yusaku Maezawa’s circumlunar DearMoon mission and BFR’s first real launch contract, SpaceX updated BFR’s design, stretching the booster 12 meters for a total height of 118m (390 ft) and hedging its performance figures with an estimate of 100 tons to LEO in a fully-reusable configuration.
Around the same time as Musk’s 2018 BFR presentation, though, the SpaceX CEO made the decision to entirely scrap the rocket’s composites-heavy design, renaming the rocket ‘Starship’ and replacing the material with stainless steel – effectively reverting structures development to the drawing board. The principles of the rocket, its general shape and layout, and the Raptor engine powering it remained the same. Thanks to steel’s extreme affordability relative to cutting-edge composites, SpaceX was able to make rapid progress and ultimately flew Starhopper – a steel water-tower-esque rocket powered by Raptor – less than a year later in July and August 2019.
Less than a year after Starhopper’s 150m (~500 ft) hop, SpaceX successfully hopped a far more mature Starship prototype known as SN5, which relied on far thinner steel and effectively amounted to a full prototype of the tank section of an orbital-class ship. Just a month later, in September 2020, SpaceX repeated the feat with an entirely different Starship prototype, demonstrating repeatability both in production and flight. Three months later, Starship SN8 – featuring flaps, a nosecone, header tanks, and two more Raptor engines – nearly aced its launch debut. In May 2021, after three more failed test flights, Starship SN15 stuck the landing and survived a 10 km launch, more or less fully demonstrating the rocket’s exotic skydiver-style descent and last-second flip for a vertical landing.
Visible progress has slowed and flight testing has halted since SpaceX began pushing for the first orbital Starship test flight in mid-2021. The company decided against reusing Starship SN15 and also chose not to attempt to replicate the ship’s successful landing with Starship SN16, which was ready for testing a matter of days after. Instead, SpaceX has focused on constructing the orbital launch site and slowly finished Starship S20 and Super Heavy B4 – a pair once expected to support the first orbital test flight. While slow compared to all previous Starship prototypes, Ship 20 has nonetheless made excellent progress and is effectively fully ready for a serious flight test. Booster 4, on the other hand, has barely completed cryogenic proof testing and has yet to perform even a partial wet dress rehearsal (with live propellant) or attempt a single static fire test in last five months.
In short, the status of Starship development – and, especially, Booster 4, Ship 20, and the first orbital test flight – has gotten quite a bit murkier over the last several months. February 9th and 10th marked a welcome change of pace, with SpaceX sailing through the very first attempt at stacking Starship hardware with Starbase’s ‘orbital integration tower’ (launch tower) and a trio of giant, robotic arms. Just a handful of hours after the first ‘arm lift’ began, Starship S20 was safely stacked atop Super Heavy Booster 4, assembling the largest rocket in the world for the second time this year.
With any luck, SpaceX CEO Elon Musk’s first presentation in two and a half years – scheduled no earlier than 8pm CST (02:00 UTC) – will shed further light on the company’s progress towards orbital test flights.


Elon Musk
Tesla announces crazy new Full Self-Driving milestone
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.
The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.
On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.
Tesla owners have now driven >8 billion miles on FSD Supervisedhttps://t.co/0d66ihRQTa pic.twitter.com/TXz9DqOQ8q
— Tesla (@Tesla) February 18, 2026
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.
Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.
Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.
This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.
The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.
News
Tesla Cybercab production begins: The end of car ownership as we know it?
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.
Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

Credit: wudapig/Reddit< /a>
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.
The Promise – A Radical Shift in Transportation Economics
Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.
Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.
Tesla ups Robotaxi fare price to another comical figure with service area expansion
It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.
However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).
The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.
The Dark Side – Job Losses and Industry Upheaval
With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.
Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.
There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.
Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.
It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.
Balancing Act – Who Wins and Who Loses
There are two sides to this story, as there are with every other one.
The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.
Elon Musk confirms Tesla Cybercab pricing and consumer release date
Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.
Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.
A Call for Thoughtful Transition
The Cybercab’s production debut forces us to weigh innovation against equity.
If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.
Elon on the MKBHD bet, stating “Yes” to the question of whether Tesla would sell a Cybercab for $30k or less to a customer before 2027 https://t.co/sfTwSDXLUN
— TESLARATI (@Teslarati) February 17, 2026
The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.
News
Tesla Model 3 wins Edmunds’ Best EV of 2026 award
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.
This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.
The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.
The Tesla Model 3 has won Edmunds Top EV of 2026:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is… pic.twitter.com/ARFh24nnDX
— TESLARATI (@Teslarati) February 18, 2026
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
In its Top Rated EVs piece on its website, it said about the Model 3:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”
Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:
“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”
The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.