News
SpaceX CEO Elon Musk to present first Starship update since 2019 [webcast]
Barring surprises, SpaceX CEO Elon Musk remains on track to present the first major update on Starship’s development since September 2019 – almost two and a half years ago.
While it’s no longer clear that SpaceX will be able to stack Starship on top of Super Heavy in time for the fully-stacked rocket to serve as an imposing backdrop for the media event, Musk seemingly remains on track to update the world on the status of Starship development as early as 8pm CT (6pm PT, 9pm ET) on Thursday, February 10th (02:00 UTC 11 Feb). Assuming the event is similar to the SpaceX CEO’s first four major Starship presentations, it will be broadcast live to the world on the company’s YouTube channel.
Musk first revealed SpaceX’s detailed plans for a massive, fully-reusable Mars rocket in September 2016. At that point, the rocket – known as the Interplanetary Transport System (ITS) – was to be 12 meters (39 ft) in diameter, 122 meters (400 ft) tall, and made almost entirely out of carbon-fiber composites. In theory, it would have been able to launch up to 300 tons (660,000 lb) to low Earth orbit (LEO) – twice the payload of Saturn V, the next most capable rocket.
In 2017, SpaceX slightly pared back its ambition with a vehicle known as BFR, measuring 9m wide and 106m tall with about a third fewer Raptor engines and estimated performance of ~130 tons (285,000 lb) to LEO. In 2018, on top of announcing Japanese billionaire Yusaku Maezawa’s circumlunar DearMoon mission and BFR’s first real launch contract, SpaceX updated BFR’s design, stretching the booster 12 meters for a total height of 118m (390 ft) and hedging its performance figures with an estimate of 100 tons to LEO in a fully-reusable configuration.
Around the same time as Musk’s 2018 BFR presentation, though, the SpaceX CEO made the decision to entirely scrap the rocket’s composites-heavy design, renaming the rocket ‘Starship’ and replacing the material with stainless steel – effectively reverting structures development to the drawing board. The principles of the rocket, its general shape and layout, and the Raptor engine powering it remained the same. Thanks to steel’s extreme affordability relative to cutting-edge composites, SpaceX was able to make rapid progress and ultimately flew Starhopper – a steel water-tower-esque rocket powered by Raptor – less than a year later in July and August 2019.
Less than a year after Starhopper’s 150m (~500 ft) hop, SpaceX successfully hopped a far more mature Starship prototype known as SN5, which relied on far thinner steel and effectively amounted to a full prototype of the tank section of an orbital-class ship. Just a month later, in September 2020, SpaceX repeated the feat with an entirely different Starship prototype, demonstrating repeatability both in production and flight. Three months later, Starship SN8 – featuring flaps, a nosecone, header tanks, and two more Raptor engines – nearly aced its launch debut. In May 2021, after three more failed test flights, Starship SN15 stuck the landing and survived a 10 km launch, more or less fully demonstrating the rocket’s exotic skydiver-style descent and last-second flip for a vertical landing.
Visible progress has slowed and flight testing has halted since SpaceX began pushing for the first orbital Starship test flight in mid-2021. The company decided against reusing Starship SN15 and also chose not to attempt to replicate the ship’s successful landing with Starship SN16, which was ready for testing a matter of days after. Instead, SpaceX has focused on constructing the orbital launch site and slowly finished Starship S20 and Super Heavy B4 – a pair once expected to support the first orbital test flight. While slow compared to all previous Starship prototypes, Ship 20 has nonetheless made excellent progress and is effectively fully ready for a serious flight test. Booster 4, on the other hand, has barely completed cryogenic proof testing and has yet to perform even a partial wet dress rehearsal (with live propellant) or attempt a single static fire test in last five months.
In short, the status of Starship development – and, especially, Booster 4, Ship 20, and the first orbital test flight – has gotten quite a bit murkier over the last several months. February 9th and 10th marked a welcome change of pace, with SpaceX sailing through the very first attempt at stacking Starship hardware with Starbase’s ‘orbital integration tower’ (launch tower) and a trio of giant, robotic arms. Just a handful of hours after the first ‘arm lift’ began, Starship S20 was safely stacked atop Super Heavy Booster 4, assembling the largest rocket in the world for the second time this year.
With any luck, SpaceX CEO Elon Musk’s first presentation in two and a half years – scheduled no earlier than 8pm CST (02:00 UTC) – will shed further light on the company’s progress towards orbital test flights.


News
Tesla Giga Berlin plant manager faces defamation probe after IG Metall union complaint
Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig.
Tesla’s Giga Berlin plant manager is now under investigation after a complaint from trade union IG Metall, escalating tensions ahead of next month’s works council elections.
Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig, as per a report from rbb24.
A spokesperson for the Frankfurt (Oder) public prosecutor’s office confirmed to the German Press Agency that an investigation for defamation has been initiated following a criminal complaint filed by IG Metall against Thierig.
The dispute stems from Tesla’s allegation that an IG Metall representative secretly recorded a works council meeting using a laptop. In a post on X, Thierig described the incident as “truly beyond words,” stating that police were called and a criminal complaint was filed.
“What has happened today at Giga Berlin is truly beyond words! An external union representative from IG Metall attended a works council meeting. For unknown reasons, he recorded the internal meeting and was caught in action! We obviously called police and filed a criminal complaint!” Thierig wrote in a post on X.
Police later confirmed that officers did seize a computer belonging to an IG Metall member at Giga Berlin. Prosecutors are separately investigating the union representative on suspicion of breach of confidentiality and violation of Germany’s Works Constitution Act.
IG Metall has denied Tesla’s allegations. The union claimed that its member offered to unlock the laptop for review in order to accelerate the investigation and counter what it called false accusations. The union has also sought a labor court injunction to “prohibit Thierig from further disseminating false claims.”
The clash comes as Tesla employees prepare to vote in works council elections scheduled for March 2–4, 2026. Approximately 11,000 Giga Berlin workers are eligible to participate in the elections.
News
Tesla wins FCC approval for wireless Cybercab charging system
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.
Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system.
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.
Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”
The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”
Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”
Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”
As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.
While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.
Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.
Elon Musk
Tesla posts updated FSD safety stats as owners surpass 8 billion miles
Tesla shared the milestone as adoption of the system accelerates across several markets.
Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles.
Tesla shared the milestone in a post on its official X account.
“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average.
The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.
At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.
Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.
As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.
During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.