Connect with us

News

SpaceX Falcon 9 rocket goes vertical for 44th Starlink launch

Pictured here in 2020, Falcon 9 B1058 has gone vertical at Pad 39A for its 12th launch since May 2020. (SpaceX)

Published

on

A SpaceX Falcon 9 rocket has gone vertical at Kennedy Space Center Pad 39A ahead of the company’s 18th launch this year and 44th dedicated Starlink launch overall.

Known as Starlink 4-17, the mission will kick off up to four Starlink launches planned for May 2022. SpaceX has chosen Falcon 9 booster B1058 to launch the mission’s expendable upper stage, reusable fairing, and 53 Starlink V1.5 satellites into space, potentially making it the third Falcon booster to complete its 12th orbital-class launch in the last two months.

Barring delays, Falcon 9 will lift off with Starlink 4-17 as early as 5:42 am EDT on Friday, May 6th.

The mission is about as standard as Starlink launches come. Falcon 9 B1058 will lift off and burn for two and a half minutes before separating, flipping around, reentering Earth’s atmosphere, and landing around 634 kilometers (393 mi) downrange on drone ship A Shortfall Of Gravitas (ASOG) six minutes later. The payload fairing will split into halves and separate shortly after booster separation and eventually deploy parachutes for soft ocean landings and recovery. Falcon 9’s upper stage will reach a parking orbit about nine minutes after liftoff, reignite for just a second 45 minutes after liftoff, and deploy all 53 Starlink satellites 53 minutes after liftoff.

Starlink 4-17 will be SpaceX’s 43rd operational Starlink launch and 44th dedicated Starlink launch overall. The mission will raise the total number of Starlink satellites launched by SpaceX in the last three years to just shy of 2500 and the total number of working Starlink satellites in orbit above 2200. When SpaceX received its initial Starlink FCC license in March 2018, the company agreed to a deployment schedule that required half of the then 4425 satellites to be launched within six years and the full constellation within nine years of license receipt – March 2024 and March 2027, respectively.

Advertisement
-->

SpaceX has far exceeded the pace required to meet that schedule. Instead, despite the fact that it took SpaceX 20 months after receiving its license to begin operational Starlink launches in November 2019, SpaceX will cross the halfway point on May 6th, 2022 – nearly two years faster than required. In fact, even without considering Starship’s potential impact, SpaceX’s growing launch cadence suggests that the company could finish its first 4408-satellite Starlink constellation by the FCC’s 50% deadline.

Finally, after Starlink 4-17, SpaceX should also have more than 700 working Starlink V1.5 satellites in orbit since launches began in September 2021. While hundreds of those satellites are still in transit to their final orbits, almost a third of all operational Starlink satellites will have optical inter-satellite links (laser links) once the Starlink V1.5 spacecraft already in orbit finish orbit-raising. Those laser links allow Starlink to connect aircraft, ships, and other moving or exceptionally remote vehicles or locations by routing communications through other Starlink satellites when no line-of-sight ground station is available.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Elon Musk makes a key Tesla Optimus detail official

“Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote on X.

Published

on

Credit: Tesla/YouTube

Tesla CEO Elon Musk just made a key detail about Optimus official. In a post on X, the CEO clarified some key wording about Optimus, which should help the media and the public become more familiar with the humanoid robot. 

Elon Musk makes Optimus’ plural term official

Elon Musk posted a number of Optimus-related posts on X this weekend. On Saturday, he stated that Optimus would be the Von Neumann probe, a machine that could eventually be capable of replicating itself. This capability, it seems, would be the key to Tesla achieving Elon Musk’s ambitious Optimus production targets. 

Amidst the conversations about Optimus on X, a user of the social media platform asked the CEO what the plural term for the humanoid robot will be. As per Musk, Tesla will be setting the plural term for Optimus since the company also decided on the robot’s singular term. “Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote in his reply on X. 

This makes it official. For media outlets such as Teslarati, numerous Optimus bots are now called Optimi. It rolls off the tongue pretty well, too. 

Optimi will be a common sight worldwide

While Musk’s comment may seem pretty mundane to some, it is actually very important. Optimus is intended to be Tesla’s highest volume product, with the CEO estimating that the humanoid robot could eventually see annual production rates in the hundreds of millions, perhaps even more. Since Optimi will be a very common sight worldwide, it is good that people can now get used to terms describing the humanoid robot. 

Advertisement
-->

During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-Optimi-per-year production line at the Fremont Factory. Giga Texas would get an even bigger Optimus production line, which should be capable of producing tens of millions of Optimi per year. 

Continue Reading

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

Published

on

Credit: Jürgen Stegemann/LinkedIn

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading