News
SpaceX nails first Falcon 9 booster launch debut in months [photos]
On December 5th, SpaceX pulled off a flawless Falcon 9 booster debut in support of the Cargo Dragon spacecraft’s CRS-19 space station resupply mission, marking the first launch of a new booster in months.
More specifically, the last time SpaceX launched a new Falcon 9 booster was on June 25th, 2019 during STP-2, Falcon Heavy Block 5’s second mission in two months. The mission featured two flight-proven side boosters – both reused from the Block 5 rocket’s April 11th launch debut – but also relied on a new center core (B1057). B1057 unfortunately failed moments before a planned touchdown on drone ship Of Course I Still Love You (OCISLY) but still technically qualifies as the last new booster launched by SpaceX prior to CRS-19.
A few days shy of six months later, CRS-19’s brand new Falcon 9 booster (and an expendable upper stage) rolled out to SpaceX’s LC-40 launch pad, confirming suspicions that the mission would use a new booster instead of twice-flown B1056.

After the booster successfully launched CRS-17 and CRS-18 in May and July 2019, both SpaceX and NASA indicated that B1056 was the most likely candidate to launch CRS-19. Plans clearly changed, although SpaceX indicated in a prelaunch conference that the booster manifest swap was purely a scheduling move and didn’t indicate any technical issues or dissatisfaction from NASA.
In the history of SpaceX booster reuse, NASA has thus far only been comfortable flying on flight-proven boosters that had previously flown NASA missions only, meaning that it will likely be at least 12-18 months before the space agency has another twice-flown Falcon 9 booster ready for a NASA mission. Regardless, the space agency has been undeniably willing to support the technology far sooner than most would have expected, given its history of extreme conservatism over the two or so decades.



Regardless, after a brief wind-related 24-hour delay, Falcon 9 B1059 lifted off for the first time on December 5th, performing perfectly and ultimately landing on drone ship Of Course I Still Love You (OCISLY) to leave the upper stage with enough fuel to perform experiments after deploying Cargo Dragon. The mission’s drone ship landing – unusual for Cargo Dragon launches – raised suspicions in the spaceflight community and SpaceX ultimately confirmed the above information, indicating that CRS-19’s upper stage would perform orbital coast tests (likely for the USAF).
As it turns out Falcon 9 B1059’s flawless landing aboard OCISLY also made it the 20th booster SpaceX has successfully recovered. All told, SpaceX has flown a total of 46 separate missions with flight-proven Falcon 9 and Falcon Heavy boosters, all of which have occurred since the technology’s March 2017 debut.
After reaching orbit for the third time ever, Cargo Dragon capsule C106 and a fresh trunk began the journey to the International Space Station (ISS) with around 2600 kg (5800 lb) of science experiments, consumables, and other cargo aboard. The spacecraft successful rendezvoused with the ISS on December 8th and was captured and berthed by the station’s massive robotic arm (Canadarm2) shortly thereafter. All told, SpaceX has now delivered roughly 41 metric tons (90,000 lb) of cargo for NASA over its 19 successful missions to the ISS.
Meanwhile, with its first launch and landing – and a relatively gentle one, at that – under its belt, Falcon 9 B1059 should theoretically be a prime candidate for rapid turnaround, although there’s a good chance that SpaceX will hold the booster to support CRS-20, Cargo Dragon 1’s last planned launch. That mission is expected no earlier than March 2020.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.
News
Tesla FSD (Supervised) is about to go on “widespread” release
In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”
Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin.
The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.
FSD V14.2 improvements
FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.
A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.
Elon Musk’s predicted wide release
The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”
FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles.
News
Tesla FSD V14.2 starts rolling out to initial batch of vehicles
It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.
Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.
So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well.
Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots.
It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.
Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.


Release Notes
2025.38.9.5
Currently Installed
FSD (Supervised) v14.2
Full Self-Driving (Supervised) v14.2 includes:
- Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
- Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
- Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
- Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
Upcoming Improvements:
- Overall smoothness and sentience
- Parking spot selection and parking quality