News
SpaceX Falcon 9 booster fires up ahead of NASA launch and surprise drone ship landing
SpaceX has successfully fired up a new rocket ahead of what is now believed to be a surprise Falcon 9 booster drone ship landing, to follow shortly after the company’s upcoming CRS-19 Cargo Dragon resupply mission for NASA.
Around 5:30 pm EST (22:30 UTC) on November 26th, a Falcon 9 rocket – featuring a rare unflown booster – successfully performed a wet dress rehearsal (WDR) and ignited all nine of its first age Merlin 1D engines, verifying the rocket’s health and perfectly simulating a launch right up to the point of liftoff. With that routine static fire complete, SpaceX now has a luxurious seven days to bring the rocket horizontal, roll it back into LC-40’s integration and processing hangar, install Cargo Dragon atop the second stage, and roll the fully-integrated rocket back out to the launch mount.
According to NASASpaceflight.com reporter Michael Baylor, SpaceX decided to swap boosters, moving Falcon 9 B1056.3 to a commercial satellite mission and assigning B1059.1 to Cargo Dragon’s NASA CRS-19 resupply mission. Prior to visual confirmation of this shift, NASA and SpaceX had indicated interest in flying Block 5 booster B1056 for a third time after it successfully completed its second launch and landing for NASA on July 25th, 2019. That would have been the first time NASA certified a twice-flown SpaceX booster to launch a NASA mission, a critical step along the path to making booster reuse routine – even for SpaceX’s highest-profile customers.
Instead, B1056.3 is now scheduled to launch the Kacific-1/JCSAT-18 commsat no earlier than December 15th, while CRS-19 is scheduled to lift off at 12:51 pm EST (17:51 UTC) on December 4th. As with most other missions designed to quickly rendezvous with the International Space Station (ISS), CRS-19’s launch window is effectively instantaneous, meaning that any issue during the countdown or day-of preparations will force a ~24-hour recycle.
Aside from it being unclear why exactly NASA, SpaceX, or both parties decided against launching B1056 for the third time on CRS-19, the mission features another minor mystery. Instead of using the performance left over from such a light launch to low Earth orbit (LEO) to return the booster to launch site (RTLS) and land at SpaceX’s LZ-1/2 landing pads, it appears that Falcon 9 B1059 will attempt to land aboard drone ship Of Course I Still Love You (OCISLY).
Since April 2016, SpaceX has only once intentionally recovered Falcon 9 by sea after a Cargo Dragon launch. That particularly recovery occurred during CRS-17 in May 2019, just a few weeks after Crew Dragon capsule DM-1 catastrophically exploded just prior to an attempted static fire test located adjacent to LZ-1/2. That explosion littered the area with evidence, precluding Falcon 9’s planned LZ-1 recovery in the same way that a police helicopter would likely try to avoid landing directly on top of an active crime scene. In that case, extraordinary attenuating circumstances were required before SpaceX redirected a CRS launch’s booster recovery to a drone ship.
Seemingly lacking similarly extraordinary circumstances, it remains to be seen whether SpaceX or NASA will offer an explanation for the unexpected change in plans. On the plus side, an unexpected Falcon 9 drone ship landing also means an unexpected Port Canaveral return, which should offer increasingly rare views of a once-flown Falcon 9 booster.
Routinely reusable spacecraft
As expected, CRS-19 will become the second orbital launch of a twice-flown Cargo Dragon capsule, flexing SpaceX’s reusability muscles in the much less forgiving realm of orbital spacecraft. On July 25th, CRS-18 became the first such mission to reuse a twice-flown spacecraft, leaving SpaceX with several additional twice-flown Cargo Dragon capsules as the only plausible options for its remaining three CRS1 missions.
SpaceX says that CRS-19’s Cargo Dragon capsule previously flew CRS-4 (Sept 2014) and CRS-11 (June 2017), identifying it as capsule C106. As it turns out, C106 supported SpaceX’s first Cargo Dragon capsule reuse, making it a fairly historic vehicle – the first commercial orbital spacecraft reused in history. Beginning with CRS-3, Dragon 1 vehicles were designed to support up to three orbital missions each, leaving SpaceX with four possible capsules (C110-C113) capable of supporting CRS-20, Dragon 1’s last planned launch.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla says its Texas lithium refinery is now operational and unlike anything in North America
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
A first-of-its-kind lithium refining process
In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.
According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.
Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted.
Musk calls the facility the largest lithium refinery in America
The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational.
Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”
By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.
News
Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening
Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot
Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.
Calacanis’ comments were shared publicly on X, and they were quite noteworthy.
The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.
“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,” he noted.
The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.
“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said.
While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.
Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.
News
Tesla taps Samsung for 5G modems amid plans of Robotaxi ramp: report
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and robotaxi operations.
A report from South Korea has suggested that Samsung Electronics is set to begin supplying 5G automotive modems to Tesla. If accurate, this would mark a major expansion of the two companies’ partnership beyond AI chips and into vehicle connectivity.
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and Robotaxi operations.
Samsung’s 5G modem
As per industry sources cited by TheElec, Samsung’s System LSI division has completed development of a dedicated automotive-grade 5G modem for Tesla. The 5G modem is reportedly in its testing phase. Initial supply is expected to begin in the first half of this year, with the first deployments planned for Tesla’s Robotaxi fleet in Texas. A wider rollout to consumer vehicles is expected to follow.
Development of the modem began in early 2024 and it required a separate engineering process from Samsung’s smartphone modems. Automotive modems must meet stricter durability standards, including resistance to extreme temperatures and vibration, along with reliability over a service life exceeding 10 years. Samsung will handle chip design internally, while a partner company would reportedly manage module integration.
The deal represents the first time Samsung has supplied Tesla with a 5G vehicle modem. Tesla has historically relied on Qualcomm for automotive connectivity, but the new agreement suggests that the electric vehicle maker may be putting in some serious effort into diversifying its suppliers as connectivity becomes more critical to autonomous driving.
Deepening Tesla–Samsung ties
The modem supply builds on a rapidly expanding relationship between the two companies. Tesla previously selected Samsung’s foundry business to manufacture its next-generation AI6 chips, a deal valued at more than 22.7 trillion won and announced in mid-2025. Together, the AI chip and 5G modem agreements position Samsung as a key semiconductor partner for Tesla’s future vehicle platforms.
Industry observers have stated that the collaboration aligns with Tesla’s broader effort to reduce reliance on Chinese and Taiwanese suppliers. Geopolitical risk and long-term supply stability are believed to be driving the shift in no small part, particularly as Tesla prepares for large-scale Robotaxi deployment.
Stable, high-speed connectivity is essential for Tesla’s Full Self-Driving system, supporting real-time mapping, fleet management, and continuous software updates. By pairing in-vehicle AI computing with a new 5G modem supplier, Tesla appears to be tightening control over both its hardware stack and its global supply chain.