Connect with us

News

SpaceX Falcon 9 doubleheader still on track after fiery ULA launch abort

If things go according to plan, SpaceX is about to crush a previous Falcon 9 rocket record by launching twice in less than ten hours. (Richard Angle)

Published

on

As previously reported by Teslarati, SpaceX announced intentions to launch two Falcon 9 missions from two Florida launchpads on Sunday, August 30th. However, the ambitious goal was left in limbo.

The record-breaking doubleheader was believed to hinge upon the Saturday morning launch of a United Launch Alliance (ULA) Delta IV Heavy rocket with a classified spy satellite. However, that is apparently no longer the case.

Instead of launching on time, ULA’s infrequently-flown heavy-lift rocket was hit by 72 hours of delays to rectify minor pad hardware bugs. Around 2 am EDT (UTC-4) on August 29th, Delta IV Heavy made it just seconds away from liftoff before the rocket’s autonomous flight computer detected an anomaly with pad hardware and aborted the launch. As a result, the three cores’ three Aerojet Rocketdyne RS-68A engines were forced to shut down after ignition – an uncommon Delta IV launch abort scenario that has historically required at least a week of work to recycle for another launch attempt.

The United Launch Alliance Delta IV Heavy pictured at sunset ahead of its ultimately scrubbed launch attempt on Friday, August 28 from Space Launch Complex – 37B in Florida. (United Launch Alliance)

ULA ultimately determined that it was not possible to recycle the countdown for another attempt although enough time remained in the launch window to do so. The launch vehicle was safed and a scrub was announced.

In a statement provided by ULA confirmed that the early shutdown was “due to an unexpected condition during the terminal count at approximately three seconds before liftoff.” ULA also confirmed that “the required recycle time prior to the next launch attempt is seven days minimum.”

Advertisement

ULA has to fly before SpaceX, right?

With a minimum of seven days required to recycle the ULA Delta IV Heavy for another launch attempt, it was unclear what that meant for the fate of the SpaceX SAOCOM-1B mission.

A SpaceX Falcon 9 pictured prior to liftoff from Space Launch Complex-40. (Richard Angle)

It was previously understood that in order for SpaceX to launch the SAOCOM-1B mission from nearby Space Launch Complex-40 (SLC-40), the ULA Delta IV Heavy would have to successfully launch first. The southern polar launch trajectory of the SAOCOM-1B’s mission is one that hasn’t been flown from Cape Canaveral, FL in nearly six decades. This particular flightpath includes launch hazard zones that inch ever so close to the launchpad of the Delta IV Heavy, which is currently still on its launchpad stacked with a classified payload for the U.S. government.

It was assumed that the Falcon 9 would suffer the same minimum delay of seven days, if not longer. However, on Saturday afternoon, August 29 a SpaceX media representative confirmed that the company was still targeting the historic double header launches on Sunday, August 30.

Double the launches, double the recoveries

If SpaceX can pull it off, Sunday is set to be a stellar day for Falcon 9 launches and landings. The SAOCOM-1B mission will feature a Return To Launch Site (RTLS) landing attempt of the expended Falcon 9 booster while the Starlink Falcon 9 booster is expected to land aboard the autonomous droneship “Of Course I Still Love You” currently stationed off the coast of South Carolina.

In an unusual move, SpaceX split up the fairing catching vessels. Initially, both vessels left Port Canaveral and headed south to a catch zone located between The Bahamas and Cuba in an attempt to catch both fairing halves of the SAOCOM-1B mission. Then, GO Ms.Tree did an about-turn and met up with the booster recovery vessels off the coast of South Carolina.

Advertisement

At the time of publishing, the two Sunday Falcon 9 launches are expected to occur just nine hours apart. The Starlink V1.0-L11 mission is slated to occur at 10:12am ET (1412 UTC) from Launch Complex 39-A at Kennedy Space Center while the SAOCOM-1B mission is set to launch at 7:18pm ET (2318 UTC) from SLC-40 at Cape Canaveral Air Force Station. As usual, SpaceX will host official launch webcasts live, typically beginning around 15 minutes before liftoff.

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

Space Reporter.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading