News
SpaceX fires up Falcon 9 for first flight-proven ‘national security’ launch
On June 12th, SpaceX successfully fired up a once-flown Falcon 9 booster in the lead-up to the company’s fourth launch of an upgraded GPS III navigation satellite for the US military.
Dating back several years, SpaceX has won a vast majority of GPS III launches thanks to Falcon 9’s exceptional combination of reliability and affordability, securing all five competitively-awarded contracts. The company aced its first GPS III launch in December 2019, expending a brand new Falcon 9 booster (B1054) due to customer – not performance – requirements necessary to ensure extreme margins in the event of some kind of anomaly or underperformance during launch.
In June 2020, SpaceX once again launched a GPS III satellite for the US military, though this time the company was allowed to attempt to land the Falcon 9 booster supporting the mission – which it successfully recovered without issue. Less than five months after GPS III SV03’s successful launch, SpaceX turned around and launched GPS III SV04 – again with an all-new Falcon 9 rocket – and recovered the booster at sea. A few months prior, however, the US Space and Missile Systems Center (SMC) announced a contract modification that would allow SpaceX to begin reusing Falcon 9 boosters on National Security Space Launch (NSSL) missions – beginning with the company’s fourth GPS III launch.
Seven months later, SMC revealed that it has officially cleared SpaceX to begin launching GPS III (and other official NSSL) satellites on flight-proven Falcon rockets. Notably, that might include a Falcon Heavy launch – USSF-52 – planned as early as January 2022 that could reuse two new side boosters scheduled to debut on USSF-44 as early as October 2021.
In the meantime, though, GPS III SV05 – scheduled to launch no earlier than (NET) 12:09 pm EDT (16:09 UTC), Thursday, June 17th – is just two days away from becoming the first NSSL (formerly EELV) satellite to launch on a flight-proven commercial rocket. GPS III SV05 will reuse the same Falcon 9 booster (B1062) that successfully launched GPS III SV04 seven months prior.
While an extremely slow turnaround relative to any other modern Falcon 9 or Falcon Heavy booster, those seven months mainly gave the US military margin to fully certify flight-proven Falcons and satellite manufacturer Lockheed Martin time to deal with shortage and coronavirus-related delays. On June 12th, after rolling out to SpaceX’s Cape Canaveral LC-40 launch pad, GPS III SV05’s Falcon 9 rocket completed a wet dress rehearsal that culminated in a successful several-second static fire of booster B1062.
Now cleared for flight, Falcon 9 will be brought horizontal and roll back to LC-40’s integration hangar, where SpaceX will install the encapsulated GPS III SV05 satellite and payload fairing on top of the rocket’s expendable second stage.
The integrated payload assembly rolled from a nearby payload processing facility to LC-40 on June 13th, giving SpaceX four days to complete integration, roll Falcon 9 back out to the launch pad, and prepare the rocket for flight. Now alone on the East Coast for the first time in 12 months, drone ship Just Read The Instructions (JRTI) departed Port Canaveral for the GPS III SV05 booster recovery zone on the same day, followed by the latest in a line of temporary fairing recovery ships on June 14th to scoop the mission’s nosecone halves out of the Atlantic.
L-3 weather forecasts predict a 40% chance of delay on June 17th, improving to 30% on June 18th. Stay tuned for webcast details as SpaceX nears the first of many flight-proven launches for the US military.
Elon Musk
Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Elon and Ashok’s firsthand Robotaxi insights
Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.”
Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.
Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”
Towards Unsupervised operations
During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.
Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.