Connect with us

News

SpaceX Falcon 9’s next major US Air Force launch slips into early 2020 ahead of busy Q4

Falcon 9 B1054 prepares the SpaceX's first major USAF launch and Block 5's first expendable mission. The next mission is now NET January 2020. (SpaceX/USAF)

Published

on

According to an August 20th update from the US Air Force’s Space and Missile Systems Center (SMC), SpaceX’s next dedicated USAF launch – the third completed GPS III spacecraft – has slipped one month and is now scheduled no earlier than (NET) January 2020.

Known as GPS III Space Vehicle 03 (SV03), SpaceX’s next US military launch will follow just a few months after United Launch Alliance (ULA) is set to launch GPS III SV02, scheduled to lift off at 9am EDT, August 22nd. SpaceX kicked off the lengthy GPS III launch campaign in December 2018, successfully placing the ~3900 kg (8600 lb) communications and geolocation spacecraft into a transfer orbit. The mission also marked SpaceX’s first intentionally expendable Falcon 9 Block 5 launch, a trend that may or may not continue with the company’s next GPS launch.

Known as GPS Block IIIA, SV01-03 are the first three of a batch of 10 spacecraft total, produced by Lockheed Martin for an anticipated cost of roughly $600M apiece. The US Government Accountability Office (GAO) expects [PDF] little to no cost savings per unit for Block IIIA’s follow-up, Block IIIF, in which 22 additional GPS III spacecraft will be built to fully upgrade the military’s GPS constellation. GAO estimates that those 22 satellites – likely to also be built by Lockheed Martin – will cost an incredible $12B, or ~$550M apiece.

On the scale of the US military’s woefully inefficient space procurement apparatus, ~$600M per satellite is sadly a pretty good deal. Two equally modern USAF satellite acquisition programs – the Advanced Extremely High Frequency (AEHF) and Space-Based Infrared System constellations – have both surpassed their initial cost estimates by more than a factor of two. Over the entire program, GAO estimates that six AEHF satellites no less than $3 billion each, while SBIRS is in even worse shape with six new satellites expected to cost $3.2 billion apiece.

Lockheed Martin’s GPS Block IIIA assembly line. (USAF)

Meanwhile, the Raytheon-built ‘OCX’ ground systems needed to take advantage of the ~$19B GPS III satellite upgrades has been just as much of an acquisition boondoggle, nearly doubling in cost over the last few years, bringing its final cost to no less than $6.2B after years of delays. All told, completing the upgraded GPS III constellation can be expected to cost a bare minimum of $25B. This cost doesn’t even include launches, but the cost of launching all the spacecraft is – in a rare instance – going to be a small fraction of the overall acquisition, perhaps $3-4B for all 32 satellites.

Regardless of the nightmarish costs and general inefficiency, Lockheed Martin and the USAF continue to slowly march towards initial GPS III operability. August 22nd’s ULA launch and January 2020’s SpaceX launch will take significant steps towards that capability, and will – with any luck – be followed by an additional two Falcon 9 GPS III launches in 2020. Six of ten IIIA satellites have already had launch contracts awarded, five of six of which were awarded to SpaceX.

Falcon 9 B1054 lifts off on SpaceX’s first major USAF launch in December 2018. (Tom Cross)

End-of-year fireworks

GPS III SV03’s slip from December 2019 to January 2020 comes as plans for an ambitious final quarter have begun to take shape for SpaceX. Oddly, SpaceX is currently going through more than two months of downtime between its most recent launch (AMOS-17, August 6th) and its next mission (Starlink 1, NET late October). This will be the longest SpaceX has gone without launching since a catastrophic Falcon 9 failure grounded the company’s launch operations from September 2016 to January 2017.

By all appearances, customers’ payloads just aren’t ready, while SpaceX’s own Starlink constellation team is hard at work updating the satellite design and preparing for two back-to-back launches as early as October and November, potentially placing 120 high-performance satellites in orbit.

A general overview of Starlink’s bus, payload stacking, and solar arrays. (SpaceX)
60 Starlink satellites were successfully launched in May 2019 in an incredibly ambitious beta test for the SpaceX constellation. 50 satellites have successfully reached their final orbits, two are intentionally being deorbited, and the remaining 8 are still climbing the gravity well. (SpaceX)

Aside from two Starlink launches scheduled in late-October and November, SpaceX has at least six other missions that could potentially launch in Q4 2019.


LaunchDate (No Earlier Than)
Starlink 1October 17th
Starlink 2November 4th
Crew Dragon – In-Flight AbortNovember 11th
ANASIS-II – South KoreaNovember – TBD
JCSat-18/Kacific-1November – TBD
Cargo Dragon CRS-19December 4th
Sirius XM-7 (SXM-7)Q4 2019 – TBD
Crew Dragon – Demo-2December – TBD

A lack of updates from Sirius XM and the fact that Crew Dragon’s Demo-2 launch will rely entirely upon the successful completion of its prior In-Flight Abort (IFA) mean that both will very likely slip into 2020. The remaining six launches, however, have a very decent chance of launching in 2019, assuming everything goes perfectly during satellite, Falcon 9, and launch pad pre-flight preparations.

SpaceX has successfully completed six launches in three months several times before, so six launches in Q4 2019 is entirely achievable, even if a pragmatist would do well to expect additional delays into 2020.

Advertisement

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Published

on

Credit: @AdanGuajardo/X

Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater. 

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Two-seat Cybercabs make perfect sense

During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab. 

“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said. 

Advertisement

Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.

“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said. 

Tesla’s robotaxi lineup is already here

The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.

The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.

Advertisement

Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.

Continue Reading

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading