Connect with us

News

SpaceX Falcon 9 rocket breaks payload mass record with repaired booster

(SpaceX)

Published

on

SpaceX has set a new record for the heaviest payload launched on a Falcon 9 rocket as part of a routine Starlink satellite launch.

Simultaneously, the rocket responsible for setting that new record launched with a reusable booster that was last spotted clinging to life – engines heavily damaged – on the deck of a SpaceX drone ship eight months prior. At the time, it wasn’t clear if the Falcon 9 booster – theoretically capable of supporting at least 12-14 more launches – would be able to recover from the damage and fly again.

It’s now clear that the booster suffered no major invisible damage, ultimately allowing SpaceX to complete repairs and return the rocket to service at the cost of a lengthy delay.

According to spaceflight writer Alejandro Alcantarilla Romero, one additional cost – at minimum – was a full set of new Merlin 1D engines. Sometime shortly after Falcon 9 B1069’s flawless December 2021 launch and landing debut, a robotic helper known as Octagrabber most likely lost its grip on the booster while attempting to secure it. Likely already in high seas, the conditions prevented SpaceX workers from safely boarding the ship and manually securing the booster, which was then free to slide about its tilting deck.

Alternatively, it’s possible that Octagrabber successfully secured the booster but was then subjected to truly awful sea conditions. Designed to passively hold boosters to the deck with its sheer weight, even the tank-like robot wouldn’t be able to save a booster if a storm caught the drone ship off guard and the waves were high enough.

Advertisement
-->
B1069’s crumpled Merlin 1D engines. (Richard Angle)

Either way, B1069 returned to port pressed against the lip of drone ship Just Read The Instructions’ (JRTI) deck, leaning hard to port. Worse, each of its nine fragile Merlin 1D engine nozzles had been crushed like tinfoil against Octagrabber, damaging them well beyond repair. While there’s a chance that SpaceX was or will be able to salvage the parts of B1069’s original M1D engines above their bell nozzles, it’s little surprise that the company had to fully replace those engines before the booster could fly again.

The damage B1069 suffered on its first launch makes it even more impressive that SpaceX attempted to break Falcon 9’s payload record with its return to flight, suggesting that the company was extremely confident in its repairs.

Starlink 4-3 and 4-5 serve as a stand-in to visualize Starlink 4-23’s record-breaking payload deployment. (SpaceX)

SpaceX confirmed that Falcon 9 broke the record with its launch of 54 Starlink V1.5 satellites at the end of its hosted webcast, revealing that the rocket launched 16.7 metric tons (~36,800 lb) to Low Earth Orbit (LEO). The last confirmed record – claimed by CEO Elon Musk – was 16.25 tons spread over 53 Starlink V1.5 satellites, which doesn’t entirely add up unless SpaceX added several kilograms to the mass of each satellite between March and August 2022.

Assuming that both numbers are comparable, a roughly 3% improvement is far from an earth-shaking or surprising step forward for SpaceX, a company, renowned for relentless iterative improvement. What is impressive, however, is that SpaceX pushed the envelope while Falcon 9 is both fast approaching its 150th consecutively successful launch and the only rocket currently certified to launch multiple NASA astronauts to the International Space Station. SpaceX’s fifth operational NASA astronaut launch (Crew-5) is scheduled as early as October 3rd. If SpaceX pushing the envelope on Starlink 4-23 had somehow caused the launch to fail, all Falcon 9 rockets would have likely been grounded for months, almost certainly delaying Crew-5 and throwing NASA’s ISS program into chaos.

Given how successful and reliable Falcon 9 already is, it would be hard to blame SpaceX if it decided to freeze the program and avoid additional changes, even if those changes could slightly improve the rocket’s performance. Instead, the company somehow manages to continue upgrading Falcon 9’s performance without obviously impacting its reliability or incurring the wrath of its strictest US government customers. Even Falcon landings, once considered a secondary objective that could be allowed to fail, haven’t suffered. Starlink 4-23 marked SpaceX’s 64th consecutively successful booster landing.

Up next, SpaceX is scheduled to launch Starlink 3-4 no earlier than (NET) August 31st, Starlink 4-20 NET September 4th, and Starlink 4-2 NET September 7th.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla takes a step towards removal of Robotaxi service’s safety drivers

Tesla watchers are speculating that the implementation of in-camera data sharing could be a step towards the removal of the Robotaxi service’s safety drivers.

Published

on

Credit: Tesla

Tesla appears to be preparing for the eventual removal of its Robotaxi service’s safety drivers. 

This was hinted at in a recent de-compile of the Robotaxi App’s version 25.11.5, which was shared on social media platform X. 

In-cabin analytics

As per Tesla software tracker @Tesla_App_iOS, the latest update to the Robotaxi app featured several improvements. These include Live Screen Sharing, as well as a feature that would allow Tesla to access video and audio inside the vehicle. 

According to the software tracker, a new prompt has been added to the Robotaxi App that requests user consent for enhanced in-cabin data sharing, which comprise Cabin Camera Analytics and Sound Detection Analytics. Once accepted, Tesla would be able to retrieve video and audio data from the Robotaxi’s cabin. 

Video and audio sharing

A screenshot posted by the software tracker on X showed that Cabin Camera Analytics is used to improve the intelligence of features like request support. Tesla has not explained exactly how the feature will be implemented, though this might mean that the in-cabin camera may be used to view and analyze the status of passengers when remote agents are contacted.

Advertisement
-->

Sound Detection Analytics is expected to be used to improve the intelligence of features like siren recognition. This suggests that Robotaxis will always be actively listening for emergency vehicle sirens to improve how the system responds to them. Tesla, however, also maintained that data collected by Robotaxis will be anonymous. In-cabin data will not be linked to users unless they are needed for a safety event or a support request. 

Tesla watchers are speculating that the implementation of in-camera data sharing could be a step towards the removal of the Robotaxi service’s safety drivers. With Tesla able to access video and audio feeds from Robotaxis, after all, users can get assistance even if they are alone in the driverless vehicle. 

Continue Reading

Investor's Corner

Mizuho keeps Tesla (TSLA) “Outperform” rating but lowers price target

As per the Mizuho analyst, upcoming changes to EV incentives in the U.S. and China could affect Tesla’s unit growth more than previously expected.

Published

on

Credit: Tesla China

Mizuho analyst Vijay Rakesh lowered Tesla’s (NASDAQ:TSLA) price target to $475 from $485, citing potential 2026 EV subsidy cuts in the U.S. and China that could pressure deliveries. The firm maintained its Outperform rating for the electric vehicle maker, however. 

As per the Mizuho analyst, upcoming changes to EV incentives in the U.S. and China could affect Tesla’s unit growth more than previously expected. The U.S. accounted for roughly 37% of Tesla’s third-quarter 2025 sales, while China represented about 34%, making both markets highly sensitive to policy shifts. Potential 50% cuts to Chinese subsidies and reduced U.S. incentives affected the firm’s outlook.

With those pressures factored in, the firm now expects Tesla to deliver 1.75 million vehicles in 2026 and 2 million in 2027, slightly below consensus estimates of 1.82 million and 2.15 million, respectively. The analyst was cautiously optimistic, as near-term pressure from subsidies is there, but the company’s long-term tech roadmap remains very compelling. 

Despite the revised target, Mizuho remained optimistic on Tesla’s long-term technology roadmap. The firm highlighted three major growth drivers into 2027: the broader adoption of Full Self-Driving V14, the expansion of Tesla’s Robotaxi service, and the commercialization of Optimus, the company’s humanoid robot. 

“We are lowering TSLA Ests/PT to $475 with Potential BEV headwinds in 2026E. We believe into 2026E, US (~37% of TSLA 3Q25 sales) EV subsidy cuts and China (34% of TSLA 3Q25 sales) potential 50% EV subsidy cuts could be a headwind to EV deliveries. 

Advertisement
-->

“We are now estimating TSLA deliveries for 2026/27E at 1.75M/2.00M (slightly below cons. 1.82M/2.15M). We see some LT drivers with FSD v14 adoption for autonomous, robotaxi launches, and humanoid robots into 2027 driving strength,” the analyst noted. 

Continue Reading

News

Tesla’s Elon Musk posts updated Robotaxi fleet ramp for Austin, TX

Musk posted his update on social media platform X.

Published

on

Credit: @AdanGuajardo/X

Elon Musk says Tesla will “roughly double” its supervised Robotaxi fleet in Austin next month as riders report long wait times and limited availability across the pilot program in the Texas city. Musk posted his update on social media platform X.

The move comes as Waymo accelerates its U.S. expansion with its fully driverless freeway service, intensifying competition in autonomous mobility.

Tesla to increase Austin Robotaxi fleet size

Tesla’s Robotaxi service in Austin continues to operate under supervised conditions, requiring a safety monitor in the front seat even as the company seeks regulatory approval to begin testing without human oversight. The current fleet is estimated at about 30 vehicles, StockTwists noted, and Musk’s commitment to doubling that figure follows widespread rider complaints about limited access and “High Service Demand” notifications.

Influencers and early users of the Robotaxi service have observed repeated failures to secure a ride during peak times, highlighting a supply bottleneck in one of Tesla’s most visible autonomy pilots. The expansion aims to provide more consistent availability as the company scales and gathers more real-world driving data, an advantage analysts often cite as a differentiator versus rivals. 

Broader rollout plans

Tesla’s Robotaxi service has so far only been rolled out to Austin and the Bay Area, though reports have indicated that the electric vehicle maker is putting in a lot of effort to expand the service to other cities across the United States. Waymo, the Robotaxi service’s biggest competitor, has ramped its service to areas like the San Francisco Bay Area, Los Angeles, and Phoenix. 

Advertisement
-->

Analysts continue to highlight Tesla’s long-term autonomy potential due to its global fleet size, vertically integrated design, and immense real-world data. ARK Invest has maintained that Tesla Robotaxis could represent up to 90% of the company’s enterprise value by 2029. BTIG analysts, on the other hand, added that upcoming Full Self-Driving upgrades will enhance reasoning, particularly parking decisions, while Tesla pushes toward expansions in Austin, the Bay Area, and potentially 8 to 10 metro regions by the end of 2025.

Continue Reading