Connect with us
Merlin 1D's kerolox exhaust is a blindingly bright, opaque yellow-orange. (Tom Cross) Merlin 1D's kerolox exhaust is a blindingly bright, opaque yellow-orange. (Tom Cross)

News

SpaceX Falcon 9 rocket tests engines for first launch and landing of the new decade

Falcon 9 B1049 lifts off for the first time at SpaceX's LC-40 pad in September 2018. (Teslarati)

Published

on

SpaceX has successfully fired up a Falcon 9 rocket for the first time in 2020, setting the company up for the first of potentially dozens of Starlink launches over the next 12 months.

On the afternoon of January 4th, SpaceX loaded Falcon 9 with hundreds of tons of liquid oxygen, refined kerosene (RP-1), nitrogen, and helium and ultimately ignited all nine of the booster’s Merlin 1D engines, briefly producing some 7600 kN (1.7 million lbf) of thrust in a routine test known as a wet dress rehearsal (WDR) and static fire. As is tradition, SpaceX confirmed that the test looked successful just a handful of minutes after it was completed and verified that the rocket is now scheduled to launch 60 new Starlink satellites as early as 9:19 pm ET, January 6th (02:19 UTC, Jan 7).

Set to lift off from its LC-40 Cape Canaveral Air Force Station (CCAFS) launch pad, SpaceX’s first launch of the new year and decade hints at what is expected to follow over the course of 2020. In simple terms, the company’s ambitions have never been higher and anywhere from 36 to 38 orbital launches are scheduled between now and 2021 – some 65% of which will likely be internal Starlink missions.

If SpaceX manages to launch even half as many Starlink missions as it says it wants to this year, the company will be heading into 2021 with an operational internet satellite constellation nearly a thousand spacecraft strong – almost enough to ensure uninterrupted global coverage. Already, if SpaceX’s January 6th launch – known as Starlink V1 L2 (the second launch of v1.0 satellites) – goes as planned, the company will almost certainly become the owner of the world’s largest commercial satellite constellation less than eight months after it began launching its unique flat-packed spacecraft.

By designing and shaping the spacecraft for efficient packing, SpaceX’s can launch in incredible number of Starlink satellites on a single Falcon 9. (SpaceX)

In a classic SpaceX move, the company’s Starlink satellite bus is a radical departure from all other commercial spacecraft, opting for a table-like rectangular shape that is extremely flat. While the rectangular shape – likely chosen for the extreme ease of manufacturing it should allow – significantly decreases packing efficiency, Starlink’s flat design and unique deployment mechanism means that SpaceX can fit an unprecedented 60 satellites (each weighing more than 250 kg or 550 lb) into a single lightly-modified Falcon 9 payload fairing.

Ultimately, SpaceX also design its Starlink satellites to be dramatically more robust than any comparable commercial spacecraft, meaning that they are meant to tolerate the violent acoustic launch environment without foam sound suppression panels that otherwise take up space inside Falcon 9’s fairing. Additionally, they are meant to survive the odd collision during their bizarre deployment, in which Falcon 9’s upper stage spins itself like a fan and releases the entire 60-satellite stack at once. Further, this means that Starlink satellites can be transported from their Washington state factory to Cape Canaveral, Florida far more easily and cheaply than almost any other spacecraft of a similar size and weight.

Falcon 9’s second fourth flight

It’s a mouthful, but SpaceX’s Starlink-2 mission will technically mark Falcon 9’s second fourth flight, meaning that it will be the second time a single Falcon 9 booster launches (and optimally lands) for the fourth time. Thrice-flown Falcon 9 booster B1049 has been assigned to support the launch.

The fourth completed Falcon 9 Block 5 booster, B1049 debuted on September 10th, 2018 on the Telstar 18V satellite launch, followed by a second flight (Iridium-8) in January 2019 and its third and most recent launch in May 2019. B1049’s most recent mission happened to be the very first dedicated Starlink launch, placing 60 Starlink v0.9 spacecraft in orbit in a sort of massive beta test of SpaceX’s cutting-edge satellite technology and design.

In support of Starlink V1 L1, the first launch of finalized Starlink v1.0 satellites, Falcon 9 booster B1048 became the first SpaceX rocket to successfully launch and land four times in November 2019, safely returning to shore aboard drone ship Of Course I Still Love You (OCISLY) a few days later. With (hopefully) two (and soon three) recovered boosters with four flights each under their belts, SpaceX will have a relative wealth of data it can then use to plot the way forward to fifth flights of boosters and beyond – halfway to the minimum Block 5 design goal of 10 launches apiece.

Teslarati photographer Richard Angle (@RDanglePhoto) will be on-site to capture SpaceX’s first Falcon 9 launch and booster recovery of the 2020s. Stay tuned for more details and photos as the launch nears!

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Investor's Corner

Tesla (TSLA) Q4 and FY 2025 earnings results

Tesla’s Q4 and FY 2025 earnings come on the heels of a quarter where the company produced over 434,000 vehicles, delivered over 418,000 vehicles, and deployed 14.2 GWh of energy storage products.

Published

on

Credit: Tesla China

Tesla (NASDAQ:TSLA) has released its Q4 and FY 2025 earnings results in an update letter. The document was posted on the electric vehicle maker’s official Investor Relations website after markets closed today, January 28, 2025.

Tesla’s Q4 and FY 2025 earnings come on the heels of a quarter where the company produced over 434,000 vehicles, delivered over 418,000 vehicles, and deployed 14.2 GWh of energy storage products.

For the Full Year 2025, Tesla produced 1,654,667 and delivered 1,636,129 vehicles. The company also deployed a total of 46.7 GWh worth of energy storage products.

Tesla’s Q4 and FY 2025 results

As could be seen in Tesla’s Q4 and FY 2025 Update Letter, the company posted GAAP EPS of $0.24 and non-GAAP EPS of $0.50 per share in the fourth quarter. Tesla also posted total revenues of $24.901 billion. GAAP net income is also listed at $840 million in Q4.

Analyst consensus for Q4 has Tesla earnings per share falling 38% to $0.45 with revenue declining 4% to $24.74 billion, as per estimates from FactSet. In comparison, the consensus compiled by Tesla last week forecasted $0.44 per share on sales totaling $24.49 billion.

For FY 2025, Tesla posted GAAP EPS of $1.08 and non-GAAP EPS of $1.66 per share. Tesla also posted total revenues of $94.827 billion, which include $69.526 billion from automotive and $12.771 billion from the battery storage business. GAAP net income is also listed at $3.794 billion in FY 2025.

Below is Tesla’s Q4 and FY 2025 update letter.

TSLA-Q4-2025-Update by Simon Alvarez










Advertisement
Continue Reading

News

Tesla rolls out new Supercharging safety feature in the U.S.

Published

on

tesla's nacs charging connector
Credit: Tesla

Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.

It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.

The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.

With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:

“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”

The feature was first spotted by Not a Tesla App.

This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.

For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.

Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.

This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.

Continue Reading

News

LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Published

on

Credit: Tesla Optimus/X

A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Humanoid robot battery deals

LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.

China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.

LF Energy Solution vs rivals

According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.

LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.

Continue Reading