Connect with us
Merlin 1D's kerolox exhaust is a blindingly bright, opaque yellow-orange. (Tom Cross) Merlin 1D's kerolox exhaust is a blindingly bright, opaque yellow-orange. (Tom Cross)

News

SpaceX Falcon 9 rocket tests engines for first launch and landing of the new decade

Falcon 9 B1049 lifts off for the first time at SpaceX's LC-40 pad in September 2018. (Teslarati)

Published

on

SpaceX has successfully fired up a Falcon 9 rocket for the first time in 2020, setting the company up for the first of potentially dozens of Starlink launches over the next 12 months.

On the afternoon of January 4th, SpaceX loaded Falcon 9 with hundreds of tons of liquid oxygen, refined kerosene (RP-1), nitrogen, and helium and ultimately ignited all nine of the booster’s Merlin 1D engines, briefly producing some 7600 kN (1.7 million lbf) of thrust in a routine test known as a wet dress rehearsal (WDR) and static fire. As is tradition, SpaceX confirmed that the test looked successful just a handful of minutes after it was completed and verified that the rocket is now scheduled to launch 60 new Starlink satellites as early as 9:19 pm ET, January 6th (02:19 UTC, Jan 7).

Set to lift off from its LC-40 Cape Canaveral Air Force Station (CCAFS) launch pad, SpaceX’s first launch of the new year and decade hints at what is expected to follow over the course of 2020. In simple terms, the company’s ambitions have never been higher and anywhere from 36 to 38 orbital launches are scheduled between now and 2021 – some 65% of which will likely be internal Starlink missions.

If SpaceX manages to launch even half as many Starlink missions as it says it wants to this year, the company will be heading into 2021 with an operational internet satellite constellation nearly a thousand spacecraft strong – almost enough to ensure uninterrupted global coverage. Already, if SpaceX’s January 6th launch – known as Starlink V1 L2 (the second launch of v1.0 satellites) – goes as planned, the company will almost certainly become the owner of the world’s largest commercial satellite constellation less than eight months after it began launching its unique flat-packed spacecraft.

By designing and shaping the spacecraft for efficient packing, SpaceX’s can launch in incredible number of Starlink satellites on a single Falcon 9. (SpaceX)

In a classic SpaceX move, the company’s Starlink satellite bus is a radical departure from all other commercial spacecraft, opting for a table-like rectangular shape that is extremely flat. While the rectangular shape – likely chosen for the extreme ease of manufacturing it should allow – significantly decreases packing efficiency, Starlink’s flat design and unique deployment mechanism means that SpaceX can fit an unprecedented 60 satellites (each weighing more than 250 kg or 550 lb) into a single lightly-modified Falcon 9 payload fairing.

Ultimately, SpaceX also design its Starlink satellites to be dramatically more robust than any comparable commercial spacecraft, meaning that they are meant to tolerate the violent acoustic launch environment without foam sound suppression panels that otherwise take up space inside Falcon 9’s fairing. Additionally, they are meant to survive the odd collision during their bizarre deployment, in which Falcon 9’s upper stage spins itself like a fan and releases the entire 60-satellite stack at once. Further, this means that Starlink satellites can be transported from their Washington state factory to Cape Canaveral, Florida far more easily and cheaply than almost any other spacecraft of a similar size and weight.

Advertisement
-->

Falcon 9’s second fourth flight

It’s a mouthful, but SpaceX’s Starlink-2 mission will technically mark Falcon 9’s second fourth flight, meaning that it will be the second time a single Falcon 9 booster launches (and optimally lands) for the fourth time. Thrice-flown Falcon 9 booster B1049 has been assigned to support the launch.

The fourth completed Falcon 9 Block 5 booster, B1049 debuted on September 10th, 2018 on the Telstar 18V satellite launch, followed by a second flight (Iridium-8) in January 2019 and its third and most recent launch in May 2019. B1049’s most recent mission happened to be the very first dedicated Starlink launch, placing 60 Starlink v0.9 spacecraft in orbit in a sort of massive beta test of SpaceX’s cutting-edge satellite technology and design.

In support of Starlink V1 L1, the first launch of finalized Starlink v1.0 satellites, Falcon 9 booster B1048 became the first SpaceX rocket to successfully launch and land four times in November 2019, safely returning to shore aboard drone ship Of Course I Still Love You (OCISLY) a few days later. With (hopefully) two (and soon three) recovered boosters with four flights each under their belts, SpaceX will have a relative wealth of data it can then use to plot the way forward to fifth flights of boosters and beyond – halfway to the minimum Block 5 design goal of 10 launches apiece.

Teslarati photographer Richard Angle (@RDanglePhoto) will be on-site to capture SpaceX’s first Falcon 9 launch and booster recovery of the 2020s. Stay tuned for more details and photos as the launch nears!

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla aims to combat common Full Self-Driving problem with new patent

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

Published

on

Credit: @samsheffer | x

Tesla is aiming to combat a common Full Self-Driving problem with a new patent.

One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.

Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.

Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.

Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”

The patent was first spotted by Not a Tesla App.

The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”

Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.

This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.

CEO Elon Musk said during the Q2 Earnings Call:

“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”

Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.

Continue Reading

Elon Musk

Delaware Supreme Court reinstates Elon Musk’s 2018 Tesla CEO pay package

The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

The Delaware Supreme Court has overturned a lower court ruling, reinstating Elon Musk’s 2018 compensation package originally valued at $56 billion but now worth approximately $139 billion due to Tesla’s soaring stock price. 

The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla. Musk quickly celebrated the outcome on X, stating that he felt “vindicated.” He also shared his gratitude to TSLA shareholders.

Delaware Supreme Court makes a decision

In a 49-page ruling Friday, the Delaware Supreme Court reversed Chancellor Kathaleen McCormick’s 2024 decision that voided the 2018 package over alleged board conflicts and inadequate shareholder disclosures. The high court acknowledged varying views on liability but agreed rescission was excessive, stating it “leaves Musk uncompensated for his time and efforts over a period of six years.”

The 2018 plan granted Musk options on about 304 million shares upon hitting aggressive milestones, all of which were achieved ahead of time. Shareholders overwhelmingly approved it initially in 2018 and ratified it once again in 2024 after the Delaware lower court struck it down. The case against Musk’s 2018 pay package was filed by plaintiff Richard Tornetta, who held just nine shares when the compensation plan was approved.

A hard-fought victory

As noted in a Reuters report, Tesla’s win avoids a potential $26 billion earnings hit from replacing the award at current prices. Tesla, now Texas-incorporated, had hedged with interim plans, including a November 2025 shareholder-approved package potentially worth $878 billion tied to Robotaxi and Optimus goals and other extremely aggressive operational milestones.

Advertisement
-->

The saga surrounding Elon Musk’s 2018 pay package ultimately damaged Delaware’s corporate appeal, prompting a number of high-profile firms, such as Dropbox, Roblox, Trade Desk, and Coinbase, to follow Tesla’s exodus out of the state. What added more fuel to the issue was the fact that Tornetta’s legal team, following the lower court’s 2024 decision, demanded a fee request of more than $5.1 billion worth of TSLA stock, which was equal to an hourly rate of over $200,000.

Delaware Supreme Court Elon Musk 2018 Pay Package by Simon Alvarez

Continue Reading

News

Tesla Cybercab tests are going on overdrive with production-ready units

Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the vehicle being reported across social media this week.

Published

on

Credit: @JT59052914/X

Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the autonomous two-seater being reported across social media this week. Based on videos of the vehicle that have been shared online, it appears that Cybercab tests are underway across multiple states.

Recent Cybercab sightings

Reports of Cybercab tests have ramped this week, with a vehicle that looked like a production-ready prototype being spotted at Apple’s Visitor Center in California. The vehicle in this sighting was interesting as it was equipped with a steering wheel. The vehicle also featured some changes to the design of its brake lights.

The Cybercab was also filmed testing at the Fremont factory’s test track, which also seemed to involve a vehicle that looked production-ready. This also seemed to be the case for a Cybercab that was spotted in Austin, Texas, which happened to be undergoing real-world tests. Overall, these sightings suggest that Cybercab testing is fully underway, and the vehicle is really moving towards production.

Production design all but finalized?

Recently, a near-production-ready Cybercab was showcased at Tesla’s Santana Row showroom in San Jose. The vehicle was equipped with frameless windows, dual windshield wipers, powered butterfly door struts, an extended front splitter, an updated lightbar, new wheel covers, and a license plate bracket. Interior updates include redesigned dash/door panels, refined seats with center cupholders, updated carpet, and what appeared to be improved legroom.

There seems to be a pretty good chance that the Cybercab’s design has been all but finalized, at least considering Elon Musk’s comments at the 2025 Annual Shareholder Meeting. During the event, Musk confirmed that the vehicle will enter production around April 2026, and its production targets will be quite ambitious. 

Advertisement
-->
Continue Reading