News
Watch SpaceX’s last launch and landing of 2020 live [webcast]
Update: Despite no plans for a preflight static fire, SpaceX remains on track to attempt its last launch and landing of 2020 as early as 9 am EST (14:00 UTC), Thursday, December 17th.
After performing a routine preflight wet dress rehearsal (WDR) and booster static fire prior to every launch since September 2016, SpaceX has gradually begun to loosen the requirement for flight-proven rockets in 2020. Instead, if a prior flight or post-flight inspection reveal issues, static fires will serve more as a data-driven diagnostic tool. For flight-proven boosters with a clean bill of health, so to speak, SpaceX appears to be confident enough to skip the procedure on a few internal Starlink launches and the odd customer mission.

Now, despite NROL-108 begin the NRO’s first direct launch contract with SpaceX and first flight on a flight-proven Falcon 9 rocket of any kind, let alone the four-flight booster assigned to support it, the espionage agency apparently has equal faith in SpaceX. Falcon 9 B1059, a new upper stage and payload fairing, and the unspecified NROL-108 payload(s) went vertical at Kennedy Space Center (KSC) Launch Complex 39A on December 16th – far too late for any WDR or static fire testing prior to an early December 17th launch attempt.
The mission will be SpaceX’s 26th and final launch of 2020 and – barring a major surprise – the last orbital US launch of the year. As usual, SpaceX will broadcast the launch live, with coverage beginning around 15 minutes prior to liftoff (8:45 am EST/UTC-5).
The National Reconnaissance Office (NRO) says that SpaceX remains on track to attempt its last Falcon 9 launch and landing of the year after an almost two-month delay.
Originally scheduled to launch as early as October, the secretive orbital espionage agency’s NROL-108 launch plans were quietly revealed in routine communication permission requests filed by SpaceX with the FCC. Unfortunately, those plans came around the same time as a Falcon 9 booster engine issue aborted a SpaceX launch at the last second and forced the company to undergo a quick but extensive anomaly investigation. As it turns out, the Falcon 9 booster assigned to support NROL-108 (B1059) was practically siblings with the three new boosters affected by the investigation.
SpaceX may have had to swap some of the nine Merlin 1D engines on B1059, although a far less likely outcome given that B1059 had successfully completed four launches and landings at that point. Ultimately, while nothing is known for sure, payload-side issues with the NROL-108 satellite(s) are the most likely cause of most of the eight-week delay that followed. Now, confirmed by the NRO on December 14th, SpaceX is scheduled to launch its second mission for the spy agency no earlier than (NET) 9 am to 12 pm EST (14:00-17:00 UTC) on Thursday, December 17th.


For SpaceX, this will be the third time in a single month that a customer has effectively leapfrogged several Falcon 9 booster reuse milestones, once again exhibiting an extreme amount of confidence in the company’s expertise with flight-proven rockets. On December 6th, Falcon 9 booster B1058 lifted off for the fourth time in support of SpaceX’s CRS-21 space station resupply mission for NASA, marking the space agency’s first launch on a twice- or thrice-flown booster.
On December 13th, carrying a large communications satellite for Sirius XM, another Falcon 9 booster lifted off for the seventh time, becoming the first private customer to launch on a five-flight or six-flight SpaceX rocket.


As few as four days after SXM-7, SpaceX is now scheduled to launch the mysterious NROL-108 mission. It will be the first time the NRO has launched a payload on a flight-proven commercial rocket of any kind, as well as its first launch on a two-flight, three-flight, or four-flight booster – by far the biggest numerical leap a SpaceX customer has ever taken. NRO’s first and only SpaceX launch – technically contracted by spacecraft provider Bell Aerospace, not NRO itself – was completed in May 2017.
While less significant, NROL-108 will also be SpaceX’s first US government launch on a four-flight Falcon 9 booster, yet another indication that even its most conservative customers have fully bought into the value and technical viability of reusable rockets.
After launch, Falcon 9 B1059 will flip around and head back towards the Florida coast for a landing at one of SpaceX’s two East Coast Landing Zones. Deploying a minute or so after booster separation, Falcon 9’s two payload fairing halves are expected to splash down some 330 km (~205 mi) downrange, where SpaceX recovery ships GO Search and GO Ms Tree will attempt recovery.
News
Tesla hosts Rome Mayor for first Italian FSD Supervised road demo
The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets.
Tesla definitely seems to be actively engaging European officials on FSD’s capabilities, with the company hosting Rome Mayor Roberto Gualtieri and Mobility Assessor Eugenio Patanè for a hands-on road demonstration.
The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets. This comes amid Tesla’s push for FSD’s EU regulatory approvals in the coming year.
Rome officials experience FSD Supervised
Tesla conducted the demo using a Model 3 equipped with Full Self-Driving (Supervised), tackling typical Roman traffic including complex intersections, roundabouts, pedestrian crossings and mixed users like cars, bikes and scooters.
The system showcased AI-based assisted driving, prioritizing safety while maintaining flow. FSD also handled overtakes and lane decisions, though with constant driver supervision.
Investor Andrea Stroppa detailed the event on X, noting the system’s potential to reduce severe collision risks by up to seven times compared to traditional driving, based on Tesla’s data from billions of global fleet miles. The session highlighted FSD’s role as an assistance tool in its Supervised form, not a replacement, with the driver fully responsible at all times.
Path to European rollout
Tesla has logged over 1 million kilometers of testing across 17 European countries, including Italy, to refine FSD for local conditions. The fact that Rome officials personally tested FSD Supervised bodes well for the program’s approval, as it suggests that key individuals are closely watching Tesla’s efforts and innovations.
Assessor Patanè also highlighted the administration’s interest in technologies that boost road safety and urban travel quality, viewing them as aids for both private and public transport while respecting rules.
Replies on X urged involving Italy’s Transport Ministry to speed approvals, with one user noting, “Great idea to involve the mayor! It would be necessary to involve components of the Ministry of Transport and the government as soon as possible: it’s they who can accelerate the approval of FSD in Italy.”
News
Tesla FSD (Supervised) blows away French journalist after test ride
Cadot described FSD as “mind-blowing,” both for the safety of the vehicle’s driving and the “humanity” of its driving behaviors.
Tesla’s Full Self-Driving (Supervised) seems to be making waves in Europe, with French tech journalist Julien Cadot recently sharing a positive first-hand experience from a supervised test drive in France.
Cadot, who tested the system for Numerama after eight years of anticipation since early Autopilot trials, described FSD as “mind-blowing,” both for the safety of the vehicle’s driving and the “humanity” of its driving behaviors.
Julien Cadot’s FSD test in France
Cadot announced his upcoming test on X, writing in French: “I’m going to test Tesla’s FSD for Numerama in France. 8 years I’ve been waiting to relive the sensations of our very first contact with the unbridled Autopilot of the 2016s.” He followed up shortly after with an initial reaction, writing: “I don’t want to spoil too much because as media we were allowed to film everything and I have a huge video coming… But: it’s mind-blowing! Both for safety and for the ‘humanity’ of the choices.”
His later posts detailed FSD’s specific maneuvers that he found particularly compelling. These include the vehicle safely overtaking a delivery truck by inches, something Cadot said he personally would avoid to protect his rims, but FSD handled flawlessly. He also praised FSD’s cyclist overtakes, as the system always maintained the required 1.5-meter distance by encroaching on the opposite lane when clear. Ultimately, Cadot noted FSD’s decision-making prioritized safety and advancement, which is pretty remarkable.
FSD’s ‘human’ edge over Autopilot
When asked if FSD felt light-years ahead of standard Autopilot, Cadot replied: “It’s incomparable, it’s not the same language.” He elaborated on scenarios like bypassing a parked delivery truck across a solid white line, where FSD assessed safety and proceeded just as a human driver might, rather than halting indefinitely. This “humanity” impressed Cadot the most, as it allowed FSD to fluidly navigate real-world chaos like urban Paris traffic.
Tesla is currently hard at work pushing for the rollout of FSD to several European countries. Recent reports have revealed that Tesla has received approval to operate 19 FSD test vehicles on Spain’s roads, though this number could increase as the program develops. As per the Dirección General de Tráfico (DGT), Tesla would be able to operate its FSD fleet on any national route across Spain. Recent job openings also hint at Tesla starting FSD tests in Austria. Apart from this, the company is also holding FSD demonstrations in Germany, France, and Italy.
Elon Musk
Tesla Optimus shows off its newest capability as progress accelerates
Tesla Optimus showed off its newest capability as progress on the project continues to accelerate toward an ultimate goal of mass production in the coming years.
Tesla is still developing Optimus and preparing for the first stages of mass production, where units would be sold and shipped to customers. CEO Elon Musk has always marketed the humanoid robot as the biggest product in history, even outside of Tesla, but of all time.
He believes it will eliminate the need to manually perform monotonous tasks, like cleaning, mowing the lawn, and folding laundry.
However, lately, Musk has revealed even bigger plans for Optimus, including the ability to relieve humans of work entirely within the next 20 years.
JUST IN: Elon Musk says working will be ‘optional’ in less than 20 years because of AI and robotics. pic.twitter.com/l3S5kl5HBB
— Watcher.Guru (@WatcherGuru) November 30, 2025
Development at Tesla’s Artificial Intelligence and Robotics teams has progressed, and a new video was shown of the robot taking a light jog with what appeared to be some pretty natural form:
Just set a new PR in the lab pic.twitter.com/8kJ2om7uV7
— Tesla Optimus (@Tesla_Optimus) December 2, 2025
Optimus has also made several public appearances lately, including one at the Neural Information Processing Systems, or NeurIPS Conference. Some spectators shared videos of Optimus’s charging rig, as well as its movements and capabilities, most interestingly, the hand:
You have to hand it to Elon 🤟 pic.twitter.com/fZKDlmGAbe
— Ric Burton · NeurIPS 2025 (@_ricburton) December 2, 2025
The hand, forearm, and fingers have been one of the most evident challenges for Tesla in recent times, especially as it continues to work on its 3rd Generation iteration of Optimus.
Musk said during the Q3 Earnings Call:
“I don’t want to downplay the difficulty, but it’s an incredibly difficult thing, especially to create a hand that is as dexterous and capable as the human hand, which is incredible. The human hand is an incredible thing. The more you study the human hand, the more incredible you realize it is, and why you need four fingers and a thumb, why the fingers have certain degrees of freedom, why the various muscles are of different strengths, and fingers are of different lengths. It turns out that those are all there for a reason.”
The interesting part of the Optimus program so far is the fact that Tesla has made a lot of progress with other portions of the project, like movement, for example, which appears to have come a long way.
However, without a functional hand and fingers, Optimus could be rendered relatively useless, so it is evident that it has to figure this crucial part out first.