News
SpaceX’s next commercial Falcon Heavy launch to carry Astranis rideshare satellite
Geostationary satellite communications startup Astranis has decided to move its first operational satellite launch from a SpaceX Falcon 9 to a Falcon Heavy, effectively securing the massive rocket its first commercial rideshare payload.
While not technically Falcon Heavy’s first rideshare payload and not the rocket’s first commercial rideshare launch contract, Astranis’ first 400 kg (~900 lb) MicroGEO satellite nevertheless appears set to become the first commercial rideshare payload to actually fly on the world’s largest operational rocket. Not all that dissimilar to Starlink in scope and its desire to disrupt a stagnant industry, Astranis wants to offer global communications services providers a different route to geostationary internet and broadcast solutions. Unlike SpaceX’s constellation, the startup’s MicroGEO satellites are designed for geostationary orbits ~36,000 km (~22,200 mi) above Earth’s surface and more than 60 times higher than Starlink.
However, like Starlink satellites, MicroGEO will feature exceptional density (throughput per kilogram), weighing a magnitude less than average modern geostationary communications satellites while still offering up to 10 Gbps of bandwidth. Expected to cost around $40M apiece compared to ~$100M+ for most traditional offerings, the value proposition of small Astranis satellites with 5-10 times less bandwidth admittedly gets a bit blurrier, but the company should still offer a viable alternative for companies and countries that just don’t need a massive satellite.
For example, Astranis’ first customer and the buyer behind the first MicroGEO satellite – known as Aurora 4A – is Pacific Dataport, a company focused on delivering connectivity throughout Alaska – one of the most remote and sparsely populated places on Earth. That combination of attributes makes providing broadband communication services spectacularly difficult and satellite internet the perfect (and, to an extent, the only viable) solution. However, a full $100M+ geostationary communications satellite with 50-100+ Gbps of bandwidth would likely far outweigh the needs of Alaska’s ~730,000 residents – especially when most Alaskans live in the state’s few large cities, most of which already have passable internet connectivity.

As such, it’s easy to see why a small but high-performance geostationary satellite like the kind Astranis offers might be a perfect fit for an Alaskan internet provider. While low Earth orbit (LEO) constellations like OneWeb and SpaceX’s Starlink do offer far more bandwidth and a user experience potentially as good or better than a wired connection almost anywhere on Earth, both companies first have to launch hundreds or thousands of satellites to ensure continuous coverage. Both Starlink and OneWeb are a ways away from offering continuous coverage in polar regions.
Geostationary satellites – especially those as small as Aurora 4A – offer a significant shortcut, requiring just a single satellite and ground stations in one or a few very specific regions to fully complete a communications network. Of course, thanks to universal limits posed by the speed of light, geostationary internet customers end up saddled with extreme latency (ping on the order of 300-1000ms) and strict individual bandwidth limits. But in places like Alaska, where there can easily be no alternative for the most rural residents, Astranis – or just about anything – could bring welcome relief.

Now, Astranis says it has moved the first MicroGEO satellite from a SpaceX Falcon 9 rocket to rideshare payload on Falcon Heavy’s upcoming ViaSat-3 launch, scheduled no earlier than Q2 2022. According to the startup, doing so will allow the tiny satellite to begin operations over Alaska mere days or a few weeks after launch, saving months of orbit-raising thanks to Falcon Heavy’s performance. That’s only possible because, as the Astranis press release also revealed, Falcon Heavy is scheduled to launch the 6.4 ton (~14,100 lb) ViaSat-3 and 400 kg (~900 lb) Aurora 4A satellites directly to geostationary orbit (GEO). If Falcon Heavy’s upcoming USSF-44 mission launches on schedule next month, ViaSat-3 will be SpaceX’s second direct-to-GEO mission ever and the company’s first for a commercial customer.
Assuming SpaceX is still able to recover two – or even all three – of Falcon Heavy’s side boosters while launching almost 7 tons (~15,500 lb) of satellites directly to GEO, it will also demonstrate just how much of a force to be reckoned with it really is, well and truly leaving competitors ULA and Arianespace with nowhere to hide on the open market.
News
Tesla Supercharger network delivers record 6.7 TWh in 2025
The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.
Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide.
To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.
Record 6.7 TWh delivered in 2025
The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream.
Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.
This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.
Resilience after Supercharger team changes
2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”
Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.
Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible.
News
Tesla targets production increase at Giga Berlin in 2026
Plant manager André Thierig confirmed the facility’s stable outlook to the DPA, noting that Giga Berlin implemented no layoffs or shutdowns amid challenging market conditions.
Tesla is looking positively toward 2026 with plans for further growth at its Grünheide factory in Germany, following steady quarterly increases throughout 2025.
Plant manager André Thierig confirmed the facility’s stable outlook to the Deutsche Presse-Agentur (DPA), noting that Giga Berlin implemented no layoffs or shutdowns despite challenging market conditions.
Giga Berlin’s steady progress
Thierig stated that Giga Berlin’s production actually rose in every quarter of 2025 as planned, stating: “This gives us a positive outlook for the new year, and we expect further growth.” The factory currently supplies over 30 markets, with Canada recently being added due to cost advantages.
Giga Berlin’s expansion is still underway, with the first partial approval for capacity growth being secured. Preparations for a second partial approval are underway, though the implementation of more production capacity would still depend on decisions from Tesla’s US leadership.
Over the year, updates to Giga Berlin’s infrastructure were also initiated. These include the relocation of the Fangschleuse train station and the construction of a new road. Tesla is also planning to start battery cell production in Germany starting 2027, targeting up to 8 GWh annually.
Resilience amid market challenges
Despite a 48% drop in German registrations, Tesla maintained Giga Berlin’s stability. Thierig highlighted this, stating that “We were able to secure jobs here and were never affected by production shutdowns or job cuts like other industrial sites in Germany.”
Thierig also spoke positively towards the German government’s plans to support households, especially those with low and middle incomes, in the purchase and leasing of electric vehicles this 2026. “In our opinion, it is important that the announcement is implemented very quickly so that consumers really know exactly what is coming and when,” the Giga Berlin manager noted.
Giga Berlin currently employs around 11,000 workers, and it produces about 5,000 Model Y vehicles per week, as noted in an Ecomento report. The facility produces the Model Y Premium variants, the Model Y Standard, and the Model Y Performance.
News
Tesla revamped Semi spotted, insane 1.2 MW charging video releases
These developments highlight Tesla’s ongoing refinements to the vehicle’s design and infrastructure.
Tesla is gearing up for high-volume Semi production in 2026, with the Class 8 all-electric truck’s revamped variant being spotted in the wild recently. Official footage from Tesla also showed the Semi achieving an impressive 1.2 MW charging rate on a charger.
These developments highlight Tesla’s ongoing refinements to the vehicle’s design and infrastructure.
Revamped Tesla Semi sighting
Tesla Semi advocate @HinrichsZane, who has been chronicling the progress of the vehicle’s Nevada factory, recently captured exclusive drone footage of the refreshed Class 8 truck at a Megacharger stall near Giga Nevada. The white unit features a full-width front light bar similar to the Model Y and the Cybercab, shorter side windows, a cleared fairing area likely for an additional camera, and diamond plate traction strips on the steps.
Overall, the revamped Semi looks ready for production and release. The sighting marks one of the first real-life views of the Class 8 all-electric truck’s updated design, with most improvements, such as potential 4680 cells and enhanced internals, being hidden from view.
1.2 MW charging speed and a new connector
The official Tesla Semi account on X also shared an official video of Tesla engineers hitting 1.2 MW sustained charging on a Megacharger, demonstrating the vehicle’s capability for extremely rapid charging. Tesla Semi program lead Dan Priestley confirmed in a later post on X that the test occurred at a dedicated site, noting that chargers at the Semi factory in Nevada are also 1.2 MW capable.
The short video featured a revamped design for the Semi’s charging port, which seems more sleek and akin to the NACS port found in Tesla’s other vehicles. It also showed the Tesla engineers cheering as the vehicle achieved 1.2 MW during its charging session. Dan Priestley explained the Semi’s updated charging plug in a post on X.
“The connector on the prior Semi was an early version (v2.4) of MCS. Not ‘proprietary’ as anyone could have used it. We couldn’t wait for final design to have >1MW capability, so we ran with what had been developed thus far. New Semi has latest MCS that is set to be standard,” the executive wrote in a post on X.
Check out the Tesla Semi’s sighting at the Nevada factory in the video below.