Connect with us

News

SpaceX Falcon Heavy rocket to launch record-breaking communications satellite

Published

on

A report on the latest in a long line of SpaceX launches significantly delayed by customer payload readiness has been updated to confirm that the satellite in question will launch on Falcon Heavy, not Falcon 9.

Hughes revealed that it had selected SpaceX to launch its Maxar-built Jupiter-3 geostationary communications satellite during an industry conference on March 21st, 2022. At the time, Hughes stated that the satellite was on track to launch in the fourth quarter of 2022, a refinement but also a delay from earlier plans to launch sometime in H2 2022. Just six weeks later, manufacturer Maxar reported that the completion of Jupiter 3 – like many other Maxar spacecraft – had been delayed, pushing its launch to no earlier than (NET) “early 2023.”

At the same time, Maxar revealed that Jupiter 3 – also known as Echostar 24 – was expected to weigh around 9.2 metric tons (~20,300 lb) at liftoff when that launch finally happens. That figure immediately raised some questions about which SpaceX rocket Hughes or Maxar had chosen to launch the immense satellite.

Earlier on, regulatory documents revealed that Jupiter 3 would have a dry weight of 5817 kilograms (~12,825 lb). In July 2018, SpaceX broke the record for heaviest commercial geostationary satellite launch when a Falcon 9 rocket successfully delivered Telesat’s 7076-kilogram (15,600 lb) Telstar 19V to geostationary transfer orbit (GTO). To account for the satellite’s weight and still allow for Falcon 9 booster recovery, SpaceX launched Telstar 19V to a transfer orbit with its apogee (high point) well below geostationary orbit, meaning that the satellite had to do more of the work of orbit-raising. In other words, it wasn’t inconceivable that Jupiter 3 would also be launched to a low (subsynchronous) GTO on a recoverable Falcon 9.

Advertisement

However, in hindsight, Jupiter 3’s 5.8-ton dry mass should have already made it clear that that was unlikely. Telstar 19V, for example, had a reported dry mass of just over 3 tons (~6700 lb), meaning that more than half its wet mass was fuel for orbit-raising and maneuvers. In more normal cases, large geostationary satellites tend to launch with an extra 50-80% of their dry mass in fuel, not ~130%. Even at the low end of large geostationary satellites, Jupiter 3 was likely to have a launch mass of well over 8 tons.

At 9.2 tons, Jupiter 3 will leapfrog the world record for the largest commercial geostationary satellite ever launched by 30%. Barring the possibility of secret military spacecraft, it will likely be the heaviest spacecraft of any kind to reach geostationary orbit 35,785 km (22,236 miles) above Earth’s surface. More importantly, Jupiter 3 may also have the heaviest dry mass of any spacecraft to reach GEO, meaning that the actual hardware it will use to fill its role as a communications hub will also be exceptionally large and powerful. Jupiter 3 will deliver a maximum bandwidth of 500 gigabits per second.

With its exceptional heft, a recoverable Falcon 9 launch may have only been able to loft Jupiter 3 around half the way to GTO from low Earth orbit (LEO). It was little surprise, then, to learn that Hughes and Maxar had actually selected SpaceX’s far more capable Falcon Heavy rocket to launch the satellite. Even with full recovery of all three Falcon Heavy first-stage boosters, there’s a good chance that the rocket would be able to launch Jupiter 3 most of or all the way to a nominal geostationary transfer orbit. If the center core is expended and the side boosters land at sea, Falcon Heavy would likely be able to launch Jupiter 3 to a highly supersynchronous GTO, meaning that the spacecraft’s apogee would end up well above GEO. For example, on Falcon Heavy’s Block 5 launch debut, the rocket sent the ~6.5-ton (~14,250 lb) Arabsat 6A communications satellite to a GTO with an apogee of almost 90,000 kilometers (~56,000 mi), shaving about 20% off of the satellite’s orbit-raising workload.

Falcon Heavy’s Jupiter 3 mission won’t beat the record for total payload to GTO in a single launch, held by Arianespace’s Ariane 5 rocket after a 2021 mission to GTO launched two communications satellites weighing 10.27t, but it will be just one ton shy.

Advertisement

Jupiter 3 is the 10th mission firmly scheduled to launch on SpaceX’s Falcon Heavy rocket between now and 2025.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading