Connect with us

News

SpaceX Falcon Heavy rocket to launch record-breaking communications satellite

Published

on

A report on the latest in a long line of SpaceX launches significantly delayed by customer payload readiness has been updated to confirm that the satellite in question will launch on Falcon Heavy, not Falcon 9.

Hughes revealed that it had selected SpaceX to launch its Maxar-built Jupiter-3 geostationary communications satellite during an industry conference on March 21st, 2022. At the time, Hughes stated that the satellite was on track to launch in the fourth quarter of 2022, a refinement but also a delay from earlier plans to launch sometime in H2 2022. Just six weeks later, manufacturer Maxar reported that the completion of Jupiter 3 – like many other Maxar spacecraft – had been delayed, pushing its launch to no earlier than (NET) “early 2023.”

At the same time, Maxar revealed that Jupiter 3 – also known as Echostar 24 – was expected to weigh around 9.2 metric tons (~20,300 lb) at liftoff when that launch finally happens. That figure immediately raised some questions about which SpaceX rocket Hughes or Maxar had chosen to launch the immense satellite.

Earlier on, regulatory documents revealed that Jupiter 3 would have a dry weight of 5817 kilograms (~12,825 lb). In July 2018, SpaceX broke the record for heaviest commercial geostationary satellite launch when a Falcon 9 rocket successfully delivered Telesat’s 7076-kilogram (15,600 lb) Telstar 19V to geostationary transfer orbit (GTO). To account for the satellite’s weight and still allow for Falcon 9 booster recovery, SpaceX launched Telstar 19V to a transfer orbit with its apogee (high point) well below geostationary orbit, meaning that the satellite had to do more of the work of orbit-raising. In other words, it wasn’t inconceivable that Jupiter 3 would also be launched to a low (subsynchronous) GTO on a recoverable Falcon 9.

However, in hindsight, Jupiter 3’s 5.8-ton dry mass should have already made it clear that that was unlikely. Telstar 19V, for example, had a reported dry mass of just over 3 tons (~6700 lb), meaning that more than half its wet mass was fuel for orbit-raising and maneuvers. In more normal cases, large geostationary satellites tend to launch with an extra 50-80% of their dry mass in fuel, not ~130%. Even at the low end of large geostationary satellites, Jupiter 3 was likely to have a launch mass of well over 8 tons.

Advertisement
-->

At 9.2 tons, Jupiter 3 will leapfrog the world record for the largest commercial geostationary satellite ever launched by 30%. Barring the possibility of secret military spacecraft, it will likely be the heaviest spacecraft of any kind to reach geostationary orbit 35,785 km (22,236 miles) above Earth’s surface. More importantly, Jupiter 3 may also have the heaviest dry mass of any spacecraft to reach GEO, meaning that the actual hardware it will use to fill its role as a communications hub will also be exceptionally large and powerful. Jupiter 3 will deliver a maximum bandwidth of 500 gigabits per second.

With its exceptional heft, a recoverable Falcon 9 launch may have only been able to loft Jupiter 3 around half the way to GTO from low Earth orbit (LEO). It was little surprise, then, to learn that Hughes and Maxar had actually selected SpaceX’s far more capable Falcon Heavy rocket to launch the satellite. Even with full recovery of all three Falcon Heavy first-stage boosters, there’s a good chance that the rocket would be able to launch Jupiter 3 most of or all the way to a nominal geostationary transfer orbit. If the center core is expended and the side boosters land at sea, Falcon Heavy would likely be able to launch Jupiter 3 to a highly supersynchronous GTO, meaning that the spacecraft’s apogee would end up well above GEO. For example, on Falcon Heavy’s Block 5 launch debut, the rocket sent the ~6.5-ton (~14,250 lb) Arabsat 6A communications satellite to a GTO with an apogee of almost 90,000 kilometers (~56,000 mi), shaving about 20% off of the satellite’s orbit-raising workload.

Falcon Heavy’s Jupiter 3 mission won’t beat the record for total payload to GTO in a single launch, held by Arianespace’s Ariane 5 rocket after a 2021 mission to GTO launched two communications satellites weighing 10.27t, but it will be just one ton shy.

Jupiter 3 is the 10th mission firmly scheduled to launch on SpaceX’s Falcon Heavy rocket between now and 2025.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s top-rated Supercharger Network becomes Stellantis’ new key EV asset

The rollout begins in North America early next year before expanding to Japan and South Korea in 2027.

Published

on

tesla-supercharger-diner
Credit: Tesla

Stellantis will adopt Tesla’s North American Charging System (NACS) across select battery-electric vehicles starting in 2026, giving customers access to more than 28,000 Tesla Superchargers across five countries. 

The rollout begins in North America early next year before expanding to Japan and South Korea in 2027, significantly boosting public fast-charging access for Jeep, Dodge, and other Stellantis brands. The move marks one of Stellantis’ largest infrastructure expansions to date.

Stellantis unlocks NACS access

Beginning in early 2026, Stellantis BEVs, including models like the Jeep Wagoneer S and Dodge Charger Daytona, will gain access to Tesla’s Supercharger network across North America. The integration will extend to Japan and South Korea in 2027, with the 2026 Jeep Recon and additional next-generation BEVs joining the list as compatibility expands. Stellantis stated that details on adapters and network onboarding for current models will be released closer to launch, as noted in a press release.

The company emphasizes that adopting NACS aligns with a broader strategy to give customers greater freedom of choice when charging, especially as infrastructure availability becomes a deciding factor for EV buyers. With access to thousands of high-speed stations, Stellantis aims to reduce range anxiety and improve long-distance travel convenience across its global portfolio.

Tesla Supercharger network proves its value

Stellantis’ move also comes as Tesla’s Supercharger system continues to earn top rankings for reliability and user experience. In the 2025 Zapmap survey, drawn from nearly 4,000 BEV drivers across the UK, Tesla Superchargers were named the Best Large EV Charging Network for the second year in a row. The study measured reliability, ease of use, and payment experience across the country’s public charging landscape.

Advertisement
-->

Tesla’s UK network now includes 1,115 open Supercharger devices at 97 public locations, representing roughly 54% of its total footprint and marking a 40% increase in public availability since late 2024. Zapmap highlighted the Supercharger network’s consistently lower pricing compared to other rapid and ultra-rapid providers, alongside its strong uptime and streamlined user experience. These performance metrics further reinforce the value of Stellantis’ decision to integrate NACS across major markets.

Continue Reading

News

Tesla FSD and Robotaxis are making people aware how bad human drivers are

These observations really show that Tesla’s focus on autonomy would result in safer roads for everyone.

Published

on

Credit: Tesla

Tesla FSD and the Robotaxi network are becoming so good in their self-driving performance, they are starting to highlight just how bad humans really are at driving. 

This could be seen in several observations from the electric vehicle community.

Robotaxis are better than Uber, actually

Tesla’s Robotaxi service is only available in Austin and the Bay Area for now, but those who have used the service have generally been appreciative of its capabilities and performance. Some Robotaxi customers have observed that the service is simply so much more affordable than Uber, and its driving is actually really good.

One veteran Tesla owner, @BLKMDL3, recently noted that the Robotaxi service has become better than Uber simply because FSD now drives better than some human drivers.  Apart from the fact that Robotaxis allow riders to easily sync their phones to the rear display, the vehicles generally provide a significantly more comfortable ride than their manually-driven counterparts from Uber.

FSD is changing the narrative, one ride at a time

It appears that FSD V14 really is something special. The update has received wide acclaim from users since it was released, and the positive reactions are still coming. This was highlighted in a recent post from Tesla owner Travis Nicolette, who shared a recent experience with FSD. As per the Tesla owner, he was quite surprised as his car was able to accomplish a U-turn in a way that exceeded human drivers.

Advertisement
-->

Yet another example of FSD’s smooth and safe driving was showcased in a recent video, which showed a safety monitor of a Bay Area Robotaxi falling asleep in the driver’s seat. In any other car, a driver falling asleep at the wheel could easily result in a grave accident, but thanks to FSD, both the safety monitor and the passengers remained safe.

These observations, if any, really show that Tesla’s focus on autonomy would result in safer roads for everyone. As per the IIHS, there were 40,901 deaths from motor vehicle crashes in the United States in 2023. The NHTSA also estimated that in 2017, 91,000 police-reported crashes involved drowsy drivers. These crashes led to an estimated 50,000 people injured and 800 deaths. FSD could lower all these tragic statistics by a notable margin.

Continue Reading

News

Tesla lands approval for Robotaxi operation in third U.S. state

On Tuesday, Tesla officially received regulatory approval from the State of Arizona, making it the third state for the company to receive approval in.

Published

on

Tesla has officially landed approval to operate its Robotaxi ride-hailing service in its third U.S. state, as it has landed a regulatory green light from the State of Arizona’s Department of Transportation.

Tesla has been working to expand to new U.S. states after launching in Texas and California earlier this year. Recently, it said it was hoping to land in Nevada, Arizona, and Florida, expanding to five new cities in those three states.

On Tuesday, Tesla officially received regulatory approval from the State of Arizona, making it the third state for the company to receive approval in:

Tesla has also been working on approvals in Nevada and Florida, and it has also had Robotaxi test mules spotted in Pennsylvania.

The interesting thing about the Arizona approval is the fact that Tesla has not received an approval for any specific city; it appears that it can operate statewide. However, early on, Tesla will likely confine its operation to just one or two cities to keep things safe and controlled.

Over the past few months, Robotaxi mules have been spotted in portions of Phoenix and surrounding cities, such as Scottsdale, as the company has been attempting to cross off all the regulatory Ts that it is confronted with as it attempts to expand the ride-hailing service.

It appears the company will be operating it similarly to how it does in Texas, which differs from its California program. In Austin, there is no Safety Monitor in the driver’s seat, unless the route requires freeway travel. In California, there is always a Safety Monitor in the driver’s seat. However, this is unconfirmed.

Earlier today, Tesla enabled its Robotaxi app to be utilized for ride-hailing for anyone using the iOS platform.

Continue Reading