News
SpaceX Falcon Heavy rocket to launch record-breaking communications satellite
A report on the latest in a long line of SpaceX launches significantly delayed by customer payload readiness has been updated to confirm that the satellite in question will launch on Falcon Heavy, not Falcon 9.
Hughes revealed that it had selected SpaceX to launch its Maxar-built Jupiter-3 geostationary communications satellite during an industry conference on March 21st, 2022. At the time, Hughes stated that the satellite was on track to launch in the fourth quarter of 2022, a refinement but also a delay from earlier plans to launch sometime in H2 2022. Just six weeks later, manufacturer Maxar reported that the completion of Jupiter 3 – like many other Maxar spacecraft – had been delayed, pushing its launch to no earlier than (NET) “early 2023.”
At the same time, Maxar revealed that Jupiter 3 – also known as Echostar 24 – was expected to weigh around 9.2 metric tons (~20,300 lb) at liftoff when that launch finally happens. That figure immediately raised some questions about which SpaceX rocket Hughes or Maxar had chosen to launch the immense satellite.
Earlier on, regulatory documents revealed that Jupiter 3 would have a dry weight of 5817 kilograms (~12,825 lb). In July 2018, SpaceX broke the record for heaviest commercial geostationary satellite launch when a Falcon 9 rocket successfully delivered Telesat’s 7076-kilogram (15,600 lb) Telstar 19V to geostationary transfer orbit (GTO). To account for the satellite’s weight and still allow for Falcon 9 booster recovery, SpaceX launched Telstar 19V to a transfer orbit with its apogee (high point) well below geostationary orbit, meaning that the satellite had to do more of the work of orbit-raising. In other words, it wasn’t inconceivable that Jupiter 3 would also be launched to a low (subsynchronous) GTO on a recoverable Falcon 9.
However, in hindsight, Jupiter 3’s 5.8-ton dry mass should have already made it clear that that was unlikely. Telstar 19V, for example, had a reported dry mass of just over 3 tons (~6700 lb), meaning that more than half its wet mass was fuel for orbit-raising and maneuvers. In more normal cases, large geostationary satellites tend to launch with an extra 50-80% of their dry mass in fuel, not ~130%. Even at the low end of large geostationary satellites, Jupiter 3 was likely to have a launch mass of well over 8 tons.
Small bit of breaking news at this session: The @HughesConnects Jupiter 3 satellite will be launched on a @SpaceX rocket. #SATShow— Seth Miller (@WandrMe) March 21, 2022
At 9.2 tons, Jupiter 3 will leapfrog the world record for the largest commercial geostationary satellite ever launched by 30%. Barring the possibility of secret military spacecraft, it will likely be the heaviest spacecraft of any kind to reach geostationary orbit 35,785 km (22,236 miles) above Earth’s surface. More importantly, Jupiter 3 may also have the heaviest dry mass of any spacecraft to reach GEO, meaning that the actual hardware it will use to fill its role as a communications hub will also be exceptionally large and powerful. Jupiter 3 will deliver a maximum bandwidth of 500 gigabits per second.
With its exceptional heft, a recoverable Falcon 9 launch may have only been able to loft Jupiter 3 around half the way to GTO from low Earth orbit (LEO). It was little surprise, then, to learn that Hughes and Maxar had actually selected SpaceX’s far more capable Falcon Heavy rocket to launch the satellite. Even with full recovery of all three Falcon Heavy first-stage boosters, there’s a good chance that the rocket would be able to launch Jupiter 3 most of or all the way to a nominal geostationary transfer orbit. If the center core is expended and the side boosters land at sea, Falcon Heavy would likely be able to launch Jupiter 3 to a highly supersynchronous GTO, meaning that the spacecraft’s apogee would end up well above GEO. For example, on Falcon Heavy’s Block 5 launch debut, the rocket sent the ~6.5-ton (~14,250 lb) Arabsat 6A communications satellite to a GTO with an apogee of almost 90,000 kilometers (~56,000 mi), shaving about 20% off of the satellite’s orbit-raising workload.
Falcon Heavy’s Jupiter 3 mission won’t beat the record for total payload to GTO in a single launch, held by Arianespace’s Ariane 5 rocket after a 2021 mission to GTO launched two communications satellites weighing 10.27t, but it will be just one ton shy.
Jupiter 3 is the 10th mission firmly scheduled to launch on SpaceX’s Falcon Heavy rocket between now and 2025.
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
Energy
Tesla launches Cybertruck vehicle-to-grid program in Texas
The initiative was announced by the official Tesla Energy account on social media platform X.
Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills.
The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.
Texas’ Cybertruck V2G program
In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.
During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.
The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.
Powershare Grid Support
To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.
Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.
News
Samsung nears Tesla AI chip ramp with early approval at TX factory
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung clears early operations hurdle
As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.
City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.
Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips.
Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.
Samsung’s U.S. expansion
Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.
Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.
Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.
One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips.