News
SpaceX Falcon Heavy booster spotted at Kennedy Space Center
SpaceX has been spotted transporting a Falcon Heavy booster through NASA’s Kennedy Space Center (KSC) facilities, offering a slight glimpse behind the scenes amid a seemingly unending series of launch delays for the most powerful operational rocket in the world.
Continuing a recent surge of Falcon Heavy booster appearances at or around SpaceX facilities, the latest instance saw the company transporting new, unflown Falcon Heavy center core south through KSC to its HangarX rocket storage and processing facilities. While it does not appear that this particular Falcon Heavy center core is the same core believed to be assigned to the rocket’s next launch, its movement is still significant.
First, it’s not entirely clear where the Falcon Heavy center core came from. SpaceX maintains several fragmented processing and storage facilities in hangars strewn throughout the Cape Canaveral Space Force Station (CCSFS), though SpaceX’s new HangarX facility – located within KSC ground – was presumably meant to organize booster and fairing storage, outfitting, and refurbishment under one roof.
Regardless, the new Falcon Heavy center core moved to HangarX on March 9th, 2022 was missing at least a few essential parts, suggesting that it could merely be headed there to be fully outfitted for an upcoming launch. However, it could also have been moved to HangarX for longer-term storage after waiting too long at a satellite storage facility. Due to seemingly unrelenting delays impacting at least three of several Falcon Heavy launches planned in 2022, SpaceX has been stuck shuffling more and more Falcon Heavy cores over the last six or so months.


As of September 2021, all three new Falcon Heavy cores meant to support USSF-44 – set to be the rocket’s first launch in more than two years – were already inside the integration hangar at Pad 39A, the only launch site able to support Falcon Heavy. Originally meant to launch in late 2020, both USSF-44 and USSF-52 have been more or less indefinitely delayed ever since. In September, USSF-44 – one or several geostationary US military satellites – was expected to launch as early as October 2021. Soon after, the launch was delayed to “early 2022.” As of March 2022, the US military now refuses to offer even a vague public estimate for the mission’s latest launch target.
Combined with a series of either two or three Dragon launches – all of which need Pad 39A – planned as early as late March, mid-April, and early May, it’s now all but guaranteed that Falcon Heavy will have to wait until May or June 2022 for its first launch since June 2019 – a staggering three-year gap. Due to those delays, SpaceX is currently juggling an unprecedented fleet of six (soon to be seven) unflown, ready-for-flight Falcon Heavy boosters on top of another dozen flight-proven Falcon 9 and Heavy boosters.
On top of the military’s USSF-44 and USSF-52 missions, both of which are now years behind schedule, satellite communications provider ViaSat also recently announced the latest in a long line of ViaSat-3 launch delays, pushing its Falcon Heavy launch from this spring to no earlier than “late summer” – i.e. late Q3 2022. Ironically, of Falcon Heavy’s near-term missions, only NASA’s Psyche spacecraft – designed to orbit and explore an exotic asteroid tens to hundreds of millions of miles from Earth – has survived the last year or two without a major launch delay. It remains on track to launch in August 2022.
In fact, given that there is apparently so much uncertainty surrounding USSF-44 and USSF-52 that the US military is no longer willing to offer any public schedule estimate, it’s starting to look likely that Psyche – barring its own delays – could launch before USSF-44, USSF-52, and ViaSat-3. If that’s the case, SpaceX has almost half a year to prepare for the launch and it would only make sense to move all Falcon Heavy cores to longer-term storage until schedule confidence improves.
Unfortunately, that means that until there are signs of tangible preparations or actual military payloads arriving at Cape Canaveral, it’s very likely that SpaceX will have to wait until August 2022 at the earliest for Falcon Heavy’s first launch in more than three years.
News
Tesla Model 3 named New Zealand’s best passenger car of 2025
Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.
The refreshed Tesla Model 3 has won the DRIVEN Car Guide AA Insurance NZ Car of the Year 2025 award in the Passenger Car category, beating all traditional and electric rivals.
Judges praised the all-electric sedan’s driving dynamics, value-packed EV tech, and the game-changing addition of Full Self-Driving (Supervised) that went live in New Zealand this September.
Why the Model 3 clinched the crown
DRIVEN admitted they were late to the “Highland” party because the updated sedan arrived in New Zealand as a 2024 model, just before the new Model Y stole the headlines. Yet two things forced a re-evaluation this year.
First, experiencing the new Model Y reminded testers how many big upgrades originated in the Model 3, such as the smoother ride, quieter cabin, ventilated seats, rear touchscreen, and stalk-less minimalist interior. Second, and far more importantly, Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.
FSD changes everything for Kiwi buyers
The publication called the entry-level rear-wheel-drive version “good to drive and represents a lot of EV technology for the money,” but highlighted that FSD elevates it into another league. “Make no mistake, despite the ‘Supervised’ bit in the name that requires you to remain ready to take control, it’s autonomous and very capable in some surprisingly tricky scenarios,” the review stated.
At NZ$11,400, FSD is far from cheap, but Tesla also offers FSD (Supervised) on a $159 monthly subscription, making the tech accessible without the full upfront investment. That’s a game-changer, as it allows users to access the company’s most advanced system without forking over a huge amount of money.
News
Tesla starts rolling out FSD V14.2.1 to AI4 vehicles including Cybertruck
FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out.
It appears that the Tesla AI team burned the midnight oil, allowing them to release FSD V14.2.1 on Thanksgiving. The update has been reported by Tesla owners with AI4 vehicles, as well as Cybertruck owners.
For the Tesla AI team, at least, it appears that work really does not stop.
FSD V14.2.1
Initial posts about FSD V14.2.1 were shared by Tesla owners on social media platform X. As per the Tesla owners, V14.2.1 appears to be a point update that’s designed to polish the features and capacities that have been available in FSD V14. A look at the release notes for FSD V14.2.1, however, shows that an extra line has been added.
“Camera visibility can lead to increased attention monitoring sensitivity.”
Whether this could lead to more drivers being alerted to pay attention to the roads more remains to be seen. This would likely become evident as soon as the first batch of videos from Tesla owners who received V14.21 start sharing their first drive impressions of the update. Despite the update being released on Thanksgiving, it would not be surprising if first impressions videos of FSD V14.2.1 are shared today, just the same.
Rapid FSD releases
What is rather interesting and impressive is the fact that FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out. This bodes well for Tesla’s FSD users, especially since CEO Elon Musk has stated in the past that the V14.2 series will be for “widespread use.”
FSD V14 has so far received numerous positive reviews from Tesla owners, with numerous drivers noting that the system now drives better than most human drivers because it is cautious, confident, and considerate at the same time. The only question now, really, is if the V14.2 series does make it to the company’s wide FSD fleet, which is still populated by numerous HW3 vehicles.
News
Waymo rider data hints that Tesla’s Cybercab strategy might be the smartest, after all
These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.
Toyota Connected Europe designer Karim Dia Toubajie has highlighted a particular trend that became evident in Waymo’s Q3 2025 occupancy stats. As it turned out, 90% of the trips taken by the driverless taxis carried two or fewer passengers.
These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.
Toyota designer observes a trend
Karim Dia Toubajie, Lead Product Designer (Sustainable Mobility) at Toyota Connected Europe, analyzed Waymo’s latest California Public Utilities Commission filings and posted the results on LinkedIn this week.
“90% of robotaxi trips have 2 or less passengers, so why are we using 5-seater vehicles?” Toubajie asked. He continued: “90% of trips have 2 or less people, 75% of trips have 1 or less people.” He accompanied his comments with a graphic showing Waymo’s occupancy rates, which showed 71% of trips having one passenger, 15% of trips having two passengers, 6% of trips having three passengers, 5% of trips having zero passengers, and only 3% of trips having four passengers.
The data excludes operational trips like depot runs or charging, though Toubajie pointed out that most of the time, Waymo’s massive self-driving taxis are really just transporting 1 or 2 people, at times even no passengers at all. “This means that most of the time, the vehicle being used significantly outweighs the needs of the trip,” the Toyota designer wrote in his post.
Cybercab suddenly looks perfectly sized
Toubajie gave a nod to Tesla’s approach. “The Tesla Cybercab announced in 2024, is a 2-seater robotaxi with a 50kWh battery but I still believe this is on the larger side of what’s required for most trips,” he wrote.
With Waymo’s own numbers now proving 90% of demand fits two seats or fewer, the wheel-less, lidar-free Cybercab now looks like the smartest play in the room. The Cybercab is designed to be easy to produce, with CEO Elon Musk commenting that its product line would resemble a consumer electronics factory more than an automotive plant. This means that the Cybercab could saturate the roads quickly once it is deployed.
While the Cybercab will likely take the lion’s share of Tesla’s ride-hailing passengers, the Model 3 sedan and Model Y crossover would be perfect for the remaining 9% of riders who require larger vehicles. This should be easy to implement for Tesla, as the Model Y and Model 3 are both mass-market vehicles.
