Connect with us

SpaceX

SpaceX’s Falcon Heavy shown launching NASA Orion spacecraft in fan render

NASA's Orion spacecraft (left) and SpaceX's Falcon Heavy rocket (right). (NASA/SpaceX)

Published

on

A spaceflight fan’s unofficial render has offered the best look yet at what SpaceX’s Falcon Heavy could look like in the unlikely but not impossible event that NASA decides to launch its uncrewed Orion demonstration mission on commercial rockets.

Oddly enough, the thing that most stands out from artist brickmack’s interpretation of Orion and Falcon Heavy is just how relatively normal the large NASA spacecraft looks atop a SpaceX rocket. The render also serves as a visual reminder of just how little SpaceX would necessarily need to change or re-certify before Falcon Heavy would be able to launch Orion. Aside from the fact that NASA’s Launch Services Program (LSP) is not quite ready to certify the full launch vehicle for NASA missions, very few hurdles appear to stand in the way of Orion launching on a commercial rocket – be it on Falcon Heavy or ULA’s Delta IV Heavy.

In a wholly unexpected announcement made by NASA administrator Jim Bridenstine during a March 13th Congressional hearing, the agency leader revealed that NASA was seriously analyzing the possibility of launching Orion’s uncrewed lunar demonstration mission – known as Exploration Mission 1 (EM-1) – on commercial launch vehicles instead of the agency’s own Space Launch System (SLS) rocket.

The purpose: maintain the missions launch schedule – 2020 – in the face of a relentless barrage of delays facing the SLS rocket, the launch debut of which has effectively been slipped almost three years in the last 18 or so months, with the latest launch date now featuring a median target of November 2021. Some subset of NASA leaders, Congressional supporters, and White House officials have clearly begun to accept that SLS/Orion’s major continued delays are simply unacceptable to both the taxpayer and maintaining appearances, despite the fact that those delays continue to make SLS/Orion an extremely successful example of both corporate welfare and a jobs program.

As it currently stands, a median target of November 2021 for the SLS launch debut guarantees that there is almost certainly no chance of the rocket launching at any point in 2020, even if NASA took the extraordinary step of completely cutting a full-length static fire of the entirely unproven rocket prior to its debut. Known as the “Green Run”, the ~8-minute long static fire test is planned to occur at NASA’s Stennis Space Center on the B2 test stand, which NASA – despite continuous criticism from OIG before and after the decision – has spent more than $350M to refurbish. Stennis B2’s refurbishment was effectively completed just two months ago after the better part of seven years of work.

Put simply, even heroics verging on insanity would be unlikely to get SLS prime contractor Boeing to cut ~12 months off of the rocket’s schedule prevent additional unplanned delays in the 18 or so months between now and an even minutely plausible launch debut target. Admittedly, NASA’s proposed commercial alternative for Orion’s lunar launch debut also offers a range of different but equally concerning risks for the program and mission assurance.

Falcon Heavy in its currently-unflown Block 5 configuration. (SpaceX)
NASA’s SLS rocket seen in its Block 1 configuration with on Orion capsule on top. (NASA)

Major challenges remain

On one hand, the task of successfully launching NASA’s Orion spacecraft around the Moon with Delta IV Heavy and Falcon Heavy rockets has a lot going for it, regardless of which rockets launch Orion to LEO or launch the fueled upper stage to boost it around the Moon. In 2014, NASA and ULA successfully launched a partial-fidelity Orion spacecraft to an altitude of 3700 miles (~6000 km), testing some of Orion’s avionics, general spacefaring capabilities, and the craft’s heat shield, although Lockheed Martin has since significantly changed the shield’s design and method of production/installation. Regardless, the EFT-1 test flight means that a solution already more or less exists to mate Orion and its service module (ESM) to a commercial rocket and launch the duo into orbit.

If ULA is unable to essentially produce a Delta IV Heavy from scratch in less than 12-18 months, Falcon Heavy would be next in line to launch Orion/ESM, a use-case that might actually be less absurd than it seems. Thanks to the fact that SpaceX’s payload fairing is actually wider than the large Orion spacecraft (5.2 m (17 ft) vs. 5 m (16.5 ft) in diameter), any major risks of radical aerodynamic problems can be largely retired, although that would still need to be verified with models and/or wind-tunnel testing. The only major change that would need to be certified is ensuring that the Falcon second stage is capable of supporting the Orion/ESM payload, weighing at least ~26 metric tons (~57,000 lb) at launch. The heaviest payloads SpaceX has launched thus far were likely its Iridium NEXT missions, weighing around 9600 kg (21,100 lb).

However, the most difficult aspects of Bridenstine’s proposed alternative are centered around the need for the EM-1 Orion spacecraft to somehow dock with a fueled upper stage meant to be launched separately. Orion in its current EM-1 configuration does not currently have the ability to dock with anything on orbit, a challenge that would require Lockheed Martin and subcontractors to find a way to install the proper hardware and computers and develop software that was – prior to this surprise announcement – only planned to fly on EM-3 (NET 2024). As such, Lockheed Martin – notorious for slow progress, cost overruns, and delays throughout the Orion program – would effectively become the critical path in finishing and installing on-orbit docking capabilities on Orion in less than 12-18 months.

The only alternative would be to have either SpaceX or ULA retrofit some sort of docking mechanism onto one of their upper stages, perhaps less difficult than getting Lockheed Martin to work expediently but still a major challenge for such a short developmental timeframe. Put simply, completing the tasks at hand in the time allotted could easily be beyond the capabilities of old-guard NASA contractors like LockMart and Boeing. Ironically, the upper stage that was designed for EM-1 and is already more or less complete – known as the interim cryogenic propulsion stage (ICPS) – is built by Boeing, the same company that has the most to lose if NASA chooses to make the SLS rocket – which Boeing also builds – functionally redundant with a commercial dual-launch alternative.

Boeing (as part of ULA) effectively completed the first ICPS upper stage for SLS near the end of 2016. It has remained in storage for about two years. (NASA/ULA)

With information currently available, it’s thus reasonable to argue that both launching SLS/Orion in 2020 and launching Orion on Falcon Heavy and/or Delta IV Heavy in 2020 are roughly equal in the level of ambition (insanity?) and increased risk required to attempt either. The question, then, is which risky and extremely difficult challenge – versus doing nothing – is most likely to be in NASA’s best interests?

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Starship Flight 9 nears as SpaceX’s Starbase becomes a Texan City

SpaceX’s launch site is officially incorporated as Starbase, TX. Starship Flight 9 could launch on May 27, 2025. 

Published

on

spacex-starship-flight-9-starbase-city
(Credit: Jenny Hautmann/Wikimedia Commons)

SpaceX’s Starbase is officially incorporated as a city in Texas, aligning with preparations for Starship Flight 9. The newly formed city in Cameron County serves as the heart of SpaceX’s Starship program.

Starbase City spans 1.5 square miles, encompassing SpaceX’s launch facility and company-owned land. A near-unanimous vote by residents, who were mostly SpaceX employees, led to its incorporation. SpaceX’s Vice President of Test and Launch, Bobby Peden, was elected mayor of Starbase. The new Texas city also has two SpaceX employees as commissioners. All Starbase officials will serve two-year terms unless extended to four by voters.

As the new city takes shape, SpaceX is preparing for the Starship Flight 9 launch, which is tentatively scheduled for May 27, 2025, at 6:30 PM CDT from Starbase, Texas.

SpaceX secured Federal Aviation Administration (FAA) approval for up to 25 annual Starship and Super Heavy launches from the site. However, the FAA emphasized that “there are other licensing requirements still to be completed,” including policy, safety, and environmental reviews.

Advertisement

On May 15, the FAA noted SpaceX updated its launch license for Flight 9, but added: “SpaceX may not launch until the FAA either closes the Starship Flight 8 mishap investigation or makes a return to flight determination. The FAA is reviewing the mishap report SpaceX submitted on May 14.”

Proposed Texas legislation could empower Starbase officials to close local highways and restrict Boca Chica Beach access during launches. Cameron County Judge Eddie Trevino, Jr., opposes the Texas legislation, insisting beach access remain under county control. This tension highlights the balance between SpaceX’s ambitions and local interests.

Starbase’s incorporation strengthens SpaceX’s operational base as it gears up for Starship Flight 9, a critical step in its mission to revolutionize space travel. With growing infrastructure and regulatory hurdles in focus, Starbase is poised to become a cornerstone of SpaceX’s vision, blending community development with cutting-edge aerospace innovation.

Advertisement
Continue Reading

News

United Airlines debuts Starlink Wi-Fi on Detroit flight

United’s first passenger flight with Starlink Wi-Fi just landed in Detroit. Mainline flights to follow by year-end.

Published

on

starlink-debut-United-Airlines-detroit-flight
(Credit: United Airlines)

United Airlines debuted Starlink Wi-Fi on its first passenger flight to Detroit, marking a milestone in in-flight connectivity with SpaceX’s satellite internet.

On Thursday, the morning flight from Chicago’s O’Hare International Airport introduced high-speed, gate-to-gate Starlink internet for United Airlines passengers. The Starlink-equipped United Embraer E-175, tail number UA5717, departed at 7:35 a.m. for Detroit Metropolitan Airport.

United announced the rollout on X, stating, “That lightning-fast Wi-Fi we told you about? It’s here. Our first customers just found out what it’s like to break the Wi-Fi barrier and stream, scroll, shop, and game just like at home with Starlink. And it’s FREE for MileagePlus members. Rolling out across our fleet now.”

The service leverages Starlink’s 7,000+ low Earth orbit (LEO) satellites to deliver broadband globally, including in remote areas. United is the only major U.S. airline currently offering Starlink. The airline plans to expand the service across its two-cabin regional fleet and introduce it on mainline flights by year-end.

Advertisement

Sean Cudahy from The Points Guy tested Starlink’s Wi-Fi pre-launch, praising its ease and reliability. “I ran a speed test, and it clocked the Wi-Fi at 217 Mbps of download speed, and 26.8 Mbps of upload speed,” Cudahy shared, noting its suitability for long flights.

Beyond aviation, SpaceX is pitching Starlink as a GPS alternative, emphasizing its potential for Positioning, Navigation, and Timing (PNT) services. This dual capability underscores Starlink’s versatility.

In a letter to the FCC, SpaceX wrote, “One opportunity stands out as a particularly ripe, low-hanging fruit: facilitating the rapid deployment of next-generation low-Earth orbit (‘LEO’) satellite constellations that can deliver PNT as a service alongside high-speed, low-latency broadband and ubiquitous mobile connectivity.”

As SpaceX expands Starlink’s applications, from aviation to navigation, United’s adoption signals a broader shift toward satellite-driven connectivity on long flights. With plans to equip more aircraft, United and Starlink are redefining in-flight internet, promising seamless digital access at 30,000 feet.

Advertisement
Continue Reading

News

SpaceX touts Starlink as GPS alternative in FCC PNT push

SpaceX highlighted Starlink’s potential to deliver PNT services alongside its broadband offerings.

Published

on

SpaceX is positioning its Starlink constellation as a viable GPS alternative. In a letter to the Federal Communications Commission (FCC), SpaceX stated that it could leverage Starlink satellites for next-generation Positioning, Navigation, and Timing (PNT) solutions.

GPS has been run through a single provider in the United States, the Defense Department. The FCC intends to use Positioning, Navigation, and Timing (PNT) solutions to complement GPS technologies. In its letter, SpaceX highlighted Starlink’s potential to deliver PNT services alongside its broadband offerings in its letter to the FCC.

“As the Commission identifies specific actions to contribute to the whole-of-government PNT system resilience effort, one opportunity stands out as a particularly ripe, low-hanging fruit: facilitating the rapid deployment of next-generation low-Earth orbit (‘LEO’) satellite constellations that can deliver PNT as a service alongside high-speed, low-latency broadband and ubiquitous mobile connectivity,” SpaceX wrote.

SpaceX also emphasized its ongoing work to integrate PNT into its cellular Starlink service, which is expected to be launched with T-Mobile in July. The private space provider also stated that Starlink satellites already operate independently of GPS. This lays the groundwork for resilient PNT delivery across authorized frequencies, SpaceX noted in its letter.

Advertisement

“SpaceX has also been actively working to integrate PNT solutions into its direct-to-device commercial service offerings. In so doing, SpaceX can advance the Commission’s goal in this proceeding to maintain American leadership in next-generation PNT services both here at home and in over 130 countries it serves around the world.

“SpaceX looks forward to playing an integral role in creating a more robust, resilient, and secure PNT ecosystem for Americans and people around the world,” SpaceX noted.

SpaceX also advocated for a “technology-neutral approach” to GPS alternatives in its letter, while critiquing EchoStar’s unused 2GHz spectrum for mobile satellite services. Meanwhile, Globalstar, Apple’s satellite provider, also pitched its services as a GPS complement, stating that its services “can function as either an alternative or a complement to GPS.”

“Notably, Globalstar’s satellites transmit outside of the L-band, which provides PNT users with added immunity from GPS jamming and spoofing. In addition, Globalstar’s satellite transmissions at 2.4GHz are stronger than GPS signals, bolstering resilience, performance, and reliability,” GlobalStar noted.

SpaceX’s letter to the FCC can be viewed below.

Starlink GPS FCC by maria on Scribd

Advertisement
Continue Reading

Trending