Connect with us

SpaceX

SpaceX’s Falcon Heavy shown launching NASA Orion spacecraft in fan render

NASA's Orion spacecraft (left) and SpaceX's Falcon Heavy rocket (right). (NASA/SpaceX)

Published

on

A spaceflight fan’s unofficial render has offered the best look yet at what SpaceX’s Falcon Heavy could look like in the unlikely but not impossible event that NASA decides to launch its uncrewed Orion demonstration mission on commercial rockets.

Oddly enough, the thing that most stands out from artist brickmack’s interpretation of Orion and Falcon Heavy is just how relatively normal the large NASA spacecraft looks atop a SpaceX rocket. The render also serves as a visual reminder of just how little SpaceX would necessarily need to change or re-certify before Falcon Heavy would be able to launch Orion. Aside from the fact that NASA’s Launch Services Program (LSP) is not quite ready to certify the full launch vehicle for NASA missions, very few hurdles appear to stand in the way of Orion launching on a commercial rocket – be it on Falcon Heavy or ULA’s Delta IV Heavy.

In a wholly unexpected announcement made by NASA administrator Jim Bridenstine during a March 13th Congressional hearing, the agency leader revealed that NASA was seriously analyzing the possibility of launching Orion’s uncrewed lunar demonstration mission – known as Exploration Mission 1 (EM-1) – on commercial launch vehicles instead of the agency’s own Space Launch System (SLS) rocket.

The purpose: maintain the missions launch schedule – 2020 – in the face of a relentless barrage of delays facing the SLS rocket, the launch debut of which has effectively been slipped almost three years in the last 18 or so months, with the latest launch date now featuring a median target of November 2021. Some subset of NASA leaders, Congressional supporters, and White House officials have clearly begun to accept that SLS/Orion’s major continued delays are simply unacceptable to both the taxpayer and maintaining appearances, despite the fact that those delays continue to make SLS/Orion an extremely successful example of both corporate welfare and a jobs program.

As it currently stands, a median target of November 2021 for the SLS launch debut guarantees that there is almost certainly no chance of the rocket launching at any point in 2020, even if NASA took the extraordinary step of completely cutting a full-length static fire of the entirely unproven rocket prior to its debut. Known as the “Green Run”, the ~8-minute long static fire test is planned to occur at NASA’s Stennis Space Center on the B2 test stand, which NASA – despite continuous criticism from OIG before and after the decision – has spent more than $350M to refurbish. Stennis B2’s refurbishment was effectively completed just two months ago after the better part of seven years of work.

Put simply, even heroics verging on insanity would be unlikely to get SLS prime contractor Boeing to cut ~12 months off of the rocket’s schedule prevent additional unplanned delays in the 18 or so months between now and an even minutely plausible launch debut target. Admittedly, NASA’s proposed commercial alternative for Orion’s lunar launch debut also offers a range of different but equally concerning risks for the program and mission assurance.

Falcon Heavy in its currently-unflown Block 5 configuration. (SpaceX)
NASA’s SLS rocket seen in its Block 1 configuration with on Orion capsule on top. (NASA)

Major challenges remain

On one hand, the task of successfully launching NASA’s Orion spacecraft around the Moon with Delta IV Heavy and Falcon Heavy rockets has a lot going for it, regardless of which rockets launch Orion to LEO or launch the fueled upper stage to boost it around the Moon. In 2014, NASA and ULA successfully launched a partial-fidelity Orion spacecraft to an altitude of 3700 miles (~6000 km), testing some of Orion’s avionics, general spacefaring capabilities, and the craft’s heat shield, although Lockheed Martin has since significantly changed the shield’s design and method of production/installation. Regardless, the EFT-1 test flight means that a solution already more or less exists to mate Orion and its service module (ESM) to a commercial rocket and launch the duo into orbit.

If ULA is unable to essentially produce a Delta IV Heavy from scratch in less than 12-18 months, Falcon Heavy would be next in line to launch Orion/ESM, a use-case that might actually be less absurd than it seems. Thanks to the fact that SpaceX’s payload fairing is actually wider than the large Orion spacecraft (5.2 m (17 ft) vs. 5 m (16.5 ft) in diameter), any major risks of radical aerodynamic problems can be largely retired, although that would still need to be verified with models and/or wind-tunnel testing. The only major change that would need to be certified is ensuring that the Falcon second stage is capable of supporting the Orion/ESM payload, weighing at least ~26 metric tons (~57,000 lb) at launch. The heaviest payloads SpaceX has launched thus far were likely its Iridium NEXT missions, weighing around 9600 kg (21,100 lb).

However, the most difficult aspects of Bridenstine’s proposed alternative are centered around the need for the EM-1 Orion spacecraft to somehow dock with a fueled upper stage meant to be launched separately. Orion in its current EM-1 configuration does not currently have the ability to dock with anything on orbit, a challenge that would require Lockheed Martin and subcontractors to find a way to install the proper hardware and computers and develop software that was – prior to this surprise announcement – only planned to fly on EM-3 (NET 2024). As such, Lockheed Martin – notorious for slow progress, cost overruns, and delays throughout the Orion program – would effectively become the critical path in finishing and installing on-orbit docking capabilities on Orion in less than 12-18 months.

The only alternative would be to have either SpaceX or ULA retrofit some sort of docking mechanism onto one of their upper stages, perhaps less difficult than getting Lockheed Martin to work expediently but still a major challenge for such a short developmental timeframe. Put simply, completing the tasks at hand in the time allotted could easily be beyond the capabilities of old-guard NASA contractors like LockMart and Boeing. Ironically, the upper stage that was designed for EM-1 and is already more or less complete – known as the interim cryogenic propulsion stage (ICPS) – is built by Boeing, the same company that has the most to lose if NASA chooses to make the SLS rocket – which Boeing also builds – functionally redundant with a commercial dual-launch alternative.

Boeing (as part of ULA) effectively completed the first ICPS upper stage for SLS near the end of 2016. It has remained in storage for about two years. (NASA/ULA)

With information currently available, it’s thus reasonable to argue that both launching SLS/Orion in 2020 and launching Orion on Falcon Heavy and/or Delta IV Heavy in 2020 are roughly equal in the level of ambition (insanity?) and increased risk required to attempt either. The question, then, is which risky and extremely difficult challenge – versus doing nothing – is most likely to be in NASA’s best interests?

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Starlink makes a difference in Philippine province ravaged by typhoon

The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.

Published

on

Credit: Starlink/X

The Philippines’ Department of Information and Communications Technology (DICT) is using Starlink to provide connectivity in the municipality of Masbate, which was affected by Severe Tropical Storm Opong (international name Bualoi). 

The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.

Starlink units enhance connectivity

DICT Secretary Henry Aguda visited the province to assess internet and communications infrastructure and deliver 10 additional Starlink satellite units, according to the Philippine News Agency. The is move aimed at strengthening emergency response and restore digital access to the area.

Aguda met with Masbate Governor Richard Kho during his visit and joined telecommunications representatives in inspecting provincial offices, free charging stations, and Wi-Fi connectivity sites for residents. 

According to DICT officer-in-charge Rachel Ann Grabador, three Starlink units, 10 routers, and a 2kW solar-powered station have already been deployed in the province following the typhoon. The units have been installed at key facilities such as Masbate Airport’s communications tower and the Masbate Provincial Hospital’s administrative office. 

Advertisement

Game-changing technology

Thanks to its global coverage and its capability to provide high-speed internet connectivity even in remote areas, Starlink has become the best communications solution that can be deployed in the aftermath of natural disasters. Its low-cost kits, which are capable of of providing fast internet speeds, are also portable, making them easy to deploy in areas that are damaged by natural disasters.

As noted in a Space.com report, there are currently 8,475 Starlink satellites in orbit, of which 8,460 are working, as of September 25, 2025. Initially, SpaceX had filed documents with International regulators to place about 4,000 Starlink satellites in Low Earth Orbit. Over time, however, the number of planned Starlink satellites has grown, with SpaceX aiming to launch as many as 42,000 Starlink satellites to fully connect the globe.

Continue Reading

Elon Musk

SpaceX shares targets and tentative launch date for Starship Flight 11

As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.

Published

on

Credit: SpaceX

SpaceX is targeting Monday, October 13, for the eleventh test flight of its Starship launch system. The launch window is expected to open at 6:15 p.m. CT. 

Similar to past Starship missions, a live webcast will begin about 30 minutes before launch on SpaceX’s website, X account, and X TV app. As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.

Super Heavy booster landing test

The upcoming mission will build on the data gathered from Starship’s tenth test flight, focusing on booster performance and upper-stage capabilities. The Super Heavy booster, previously flown on Flight 8, will launch with 24 flight-proven Raptor engines, according to SpaceX in a blog post on its official website. Its primary objective is to validate a new landing burn engine configuration designed for the next generation of Super Heavy.

Instead of returning to Starbase, the Super Heavy booster will follow a trajectory toward the Gulf of America. During descent, it will ignite 13 engines before transitioning to a five-engine divert phase and then completing the landing burn with three central engines, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America.

Starship upper-stage experiments

The Starship upper stage for Flight 11 will carry out a series of in-space demonstrations, including the deployment of eight Starlink simulators that are comparable in size to next-generation Starlink satellites. These payloads will reenter and burn up during descent. A planned Raptor engine relight in orbit will also provide valuable test data.

Advertisement

To evaluate the upper stage’s resilience during reentry, SpaceX engineers have intentionally removed heat shield tiles from select areas to stress-test Starship’s thermal protection system. The vehicle will attempt new maneuvers during descent, including a banking profile and subsonic guidance algorithms intended to simulate future return-to-launch-site missions. The upper stage will ultimately target a splashdown in the Indian Ocean.

SpaceX has already posted a link to the livestream for Starship Flight 11: 

Continue Reading

News

Astra CEO shades SpaceX over employee workload and Starbase

Elon Musk once stated that no one ever changed the world working just 40 hours a week.

Published

on

Credit: SpaceX

Elon Musk once stated that no one ever changed the world working just 40 hours a week. This was something that is openly known among his companies. They have the potential to change the world, but they require a lot of hours.

SpaceX’s working environment was recently criticized by Chris Kemp, the chief executive officer of Astra. During some remarks at the Berkeley Space Symposium 2025 earlier this month, Kemp shared some sharp remarks about the Elon Musk-led private space enterprise.

SpaceX working conditions and Starbase

As noted in a report from Ars Technica, Kemp discussed a variety of topics during his talk. These included Astra’s successes and failures, as well as his thoughts on other players in the spaceflight industry. To be fair to Kemp, he practically shaded every major rival, calling Firefly’s engine “garbage,” dubbing Blue Origin as slow, and stating that Rocket Lab’s Electron rocket is “too small.”

SpaceX also received some colorful words from the Astra CEO. According to Kemp, SpaceX is leading the way in the spaceflight industry and Elon Musk is admirable in the way that he is willing to fail in order to move quickly. He did, however, highlight that Astra offers a significantly better working environment than SpaceX.

“It’s more fun than SpaceX, because we’re not on the border of Mexico where they’ll chop your head off if you accidentally take a left turn. And you don’t have to live in a trailer. And we don’t make you work six and a half days a week, 12 hours a day. It’s appreciated if you do, but not required,” Kemp said.

Advertisement

Elon Musk’s demands

It is known that Elon Musk demands quite a lot from his employees. However, it is also known that Musk-led companies move very fast and, in more ways than one, they have accomplished world-changing feats. Tesla, for example, has practically ushered in the era of the modern electric vehicle, and SpaceX has made space attainable through its reusable rockets. With this in mind, employees at Musk’s companies, and this of course includes SpaceX, are likely proud of their long work hours. 

No one could probably go to Mars in this lifetime with a team that really works just 40 hours a week, after all.

Continue Reading

Trending