News
SpaceX Falcon Heavy payload arrives in Florida for the first time in years
For the first time in almost three years, a spacecraft meant to launch on SpaceX’s Falcon Heavy rocket has arrived in Cape Canaveral, Florida and begun to prepare for flight.
Known as Psyche, the scientific mission is designed to venture hundreds of millions of miles from Earth to explore a namesake asteroid that’s believed to be almost entirely metallic. Psyche will also mark NASA’s first operational use of Falcon Heavy, which offers performance far superior to other existing and soon-to-be-retired rockets and at a fraction of their cost.
However, even though Psyche is now the first payload (officially confirmed) to have arrived in Florida for a Falcon Heavy launch since May or June 2019, that doesn’t guarantee that it will be first to launch.

That uncertainty is the result of multiple chronically delayed US military payloads that were both supposed to launch on different Falcon Heavy rockets as early as late 2020. In June 2018, just four months after Falcon Heavy’s iconic launch debut, the US military purchased its first operational launch on the rocket. Known as AFSPC-52 and later renamed USSF-52 after the US government cobbled together a few loosely-related military groups and rebadged them as the “Space Force,” the mission was expected to launch as early as September 2020. In February 2019, the military announced that another Falcon Heavy rocket had been chosen to launch AFSPC-44 (USSF-44) as early as late 2020 or early 2021.
About a year ago, for unknown reasons, USSF-44 took USSF-52’s place as the US military’s first operational Falcon Heavy launch. Now, between three and four years after their initial launch targets, USSF-44 is scheduled to launch NET late June 2022 (a delay of ~18 months) and USSF-52 is set to follow as soon as October 2022 (a delay of ~25 months).
On April 29th, NASA’s Launch Service Program (LSP) revealed that the ~2600-kilogram (~5700 lb) Psyche spacecraft had completed the journey from the Jet Propulsion Laboratory’s (JPL) Pasadena, California assembly facilities to Kennedy Space Center, Florida. After several years of work spent designing, manufacturing, and assembling Psyche, the spacecraft ultimately arrived at on time, leaving it on track to launch on Falcon Heavy as early as August 1st, 2022.
At the moment, that makes Psyche’s launch far more likely to happen before USSF-44, which has repeatedly gotten within a few months of a purported launch target before the US military acknowledged additional delays. Like USSF-44, Psyche’s Falcon Heavy rocket – three boosters, an upper stage, and a fairing – will be entirely new. Due to the high performance required for each mission and the fact that both will be the first operational use of the rocket for NASA and the USSF, each brand-new Falcon Heavy center core will be intentionally expended.
If it launches more or less on time, USSF-44 will be SpaceX and Falcon Heavy’s first direct launch to geostationary orbit (GEO), requiring the rocket’s upper stage to survive a roughly six-hour-long coast and perform a lengthy orbit circularization burn around ~42,500 kilometers (~26,400 mi) above Earth’s surface. With a payload that weighs around four tons (~8800 lb), it’s little surprise that Falcon Heavy’s center core will be expended. Psyche, on the other hand, is headed into deep space on a trajectory that NASA’s own ELVPerf calculator – supplied with official performance data from SpaceX – says Falcon Heavy can launch more than four tons (~8800 lb) to while still recovering all three boosters. It’s unclear why NASA would need a 50-70% safety margin.
Regardless, the second half of 2022 could be quite the spectacle of Falcon Heavy launches after a more than three-year hiatus. On top of USSF-44, Psyche, and USSF-52, Falcon Heavy is tentatively scheduled to launch a ViaSat-3 communications satellite directly to GEO in Q3 2022 and, even more tentatively, the Space Force’s USSF-67 mission in November 2022.
News
Elon Musk makes a key Tesla Optimus detail official
“Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote on X.
Tesla CEO Elon Musk just made a key detail about Optimus official. In a post on X, the CEO clarified some key wording about Optimus, which should help the media and the public become more familiar with the humanoid robot.
Elon Musk makes Optimus’ plural term official
Elon Musk posted a number of Optimus-related posts on X this weekend. On Saturday, he stated that Optimus would be the Von Neumann probe, a machine that could eventually be capable of replicating itself. This capability, it seems, would be the key to Tesla achieving Elon Musk’s ambitious Optimus production targets.
Amidst the conversations about Optimus on X, a user of the social media platform asked the CEO what the plural term for the humanoid robot will be. As per Musk, Tesla will be setting the plural term for Optimus since the company also decided on the robot’s singular term. “Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote in his reply on X.
This makes it official. For media outlets such as Teslarati, numerous Optimus bots are now called Optimi. It rolls off the tongue pretty well, too.
Optimi will be a common sight worldwide
While Musk’s comment may seem pretty mundane to some, it is actually very important. Optimus is intended to be Tesla’s highest volume product, with the CEO estimating that the humanoid robot could eventually see annual production rates in the hundreds of millions, perhaps even more. Since Optimi will be a very common sight worldwide, it is good that people can now get used to terms describing the humanoid robot.
During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-Optimi-per-year production line at the Fremont Factory. Giga Texas would get an even bigger Optimus production line, which should be capable of producing tens of millions of Optimi per year.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
