News
SpaceX’s second Falcon Heavy booster arrives in Florida as launch #2 closes in
SpaceX’s second Falcon Heavy side booster has made its way from Texas to Florida after completing a successful static fire acceptance test at the company’s McGregor complex, paving the way for the third and final booster – currently vertical on McGregor’s test stand – to complete its own round of tests and head East.
Once the third and most important booster – known as the center core – arrives at SpaceX’s Florida launch facilities, all three of the next Falcon Heavy’s boosters will be ready to head into the integration stage, culminating in an integrated static fire prior to the second launch ever of SpaceX’s flagship super-heavy-lift rocket.

A Texas pilot happened to fly by SpaceX’s McGregor facilities on January 11th, catching a live glimpse of a Merlin Vacuum (MVac) or second stage static fire test, as well a Falcon booster – perhaps Falcon Heavy’s next center core – vertical on the facility’s booster static fire stand. While it has not yet been visually confirmed as the next Falcon Heavy center core, a booster traveling through the Waco, Texas area to McGregor was spotted with protuberances that are not normally seen on regular Falcon 9 boosters and happened to be in the right place for FH-specific hardware.
- A booster – likely the next Falcon Heavy center core – was vertical at McGregor’s S1 static fire stand. (Instagram /u/tcryguy)
- An MVac or Falcon 9 S2 performs a static fire at McGregor. (Instagram /u/tcryguy)
There is also a case to be made that – per the fact that the first two side boosters have been built, shipped, tested, and delivered back-to-back – SpaceX chose to consecutively manufacture all hardware needed for the second Falcon Heavy instead of producing one or a few single-stick Falcon 9 boosters in between, which the appearance of a center core-like rocket in Texas certainly helps corroborate. While Falcon Heavy side boosters are effectively just Falcon 9 boosters with a few additional attachments and nose cones, currently scheduling indicates that SpaceX may attempt to rapidly turn all three Falcon Heavy Flight 2 boosters around perhaps just 30-60 days after their first launch. Otherwise, once the rocket’s 2019 launches have been completed, both side boosters can be converted back into Falcon 9 boosters and thus reenter SpaceX’s active fleet of flight-proven rockets.
Falcon Heavy’s center core, however, is dramatically different than a regular Falcon 9 booster, owing to the fact that it needs to essentially support triple the thrust and mechanical stresses as single-stick launches. The rocket’s design works to improve payload performance by using the two side cores to boost the center core and leave it with far more propellant left over than Falcon 9 would during a comparable launch profile, roughly equivalent to a three-person bike where only two people are pedaling hard. During a Falcon Heavy launch, side boosters thus separate a solid 30-60 seconds before the center core parts ways with the upper stage and payload.
- A diagram from a recent SpaceX document offers an idea of what Falcon Heavy Block 5 will look like. (SpaceX)
- The first Falcon Heavy, seen here fully integrated aside from its payload fairing. (SpaceX)
- Falcon Heavy just prior to its launch debut, February 2018. (Tom Cross)
- SpaceX’s Falcon Heavy prepares for the huge rocket’s inaugural launch. (SpaceX)
- LZ-1 and LZ-2, circa February 2018. (SpaceX)
Thanks to its significant differences, it’s highly unlikely – if not impossible – for a Falcon Heavy center core to launch a regular Falcon 9 mission. As such, once Falcon Heavy’s 2019 launches are completed, the center core will most likely be processed, refurbished, and then stored until the next Falcon Heavy payload is ready to go, at which point Falcon 9 boosters would be converted into Heavy side cores. Given that the Block 5 upgrade is designed to allow Falcon boosters to perform as many as 10 launches with minimal to no refurbishment and 100+ with regular repairs and maintenance, it’s entirely possible that a single Falcon Heavy center core could theoretically support all possible future launches of the rocket.
In reality, customers like the USAF and NASA will probably request new hardware for foreseeable Falcon Heavy launches, most of which would likely be extremely expensive flagship satellites (AFSPC-52) or interplanetary spacecraft (Europa Clipper).
Fans of @SpaceX will be interested to note that the government is now taking very seriously the possibility of flying Clipper on the Falcon Heavy.
— Eric Berger (@SciGuySpace) December 3, 2018
Falcon Heavy’s next two launches are planned as early as March (a large communications satellite called Arabsat 6A) and April (an experimental USAF launch called STP-2 with two dozen separate payloads). With two side boosters already in Florida, those dates are now serious possibilities, and the center core’s arrival will be the telltale sign that Falcon Heavy’s second launch ever is imminent.
News
Tesla winter weather test: How long does it take to melt 8 inches of snow?
In Pennsylvania, we got between 10 and 12 inches of snow over the weekend as a nasty Winter storm ripped through a large portion of the country, bringing snow to some areas and nasty ice storms to others.
I have had a Model Y Performance for the week courtesy of Tesla, which got the car to me last Monday. Today was my last full day with it before I take it back to my local showroom, and with all the accumulation on it, I decided to run a cool little experiment: How long would it take for Tesla’s Defrost feature to melt 8 inches of snow?
Tesla’s Defrost feature is one of the best and most underrated that the car has in its arsenal. While every car out there has a defrost setting, Tesla’s can be activated through the Smartphone App and is one of the better-performing systems in my opinion.
It has come in handy a lot through the Fall and Winter, helping clear up my windshield more efficiently while also clearing up more of the front glass than other cars I’ve owned.
The test was simple: don’t touch any of the ice or snow with my ice scraper, and let the car do all the work, no matter how long it took. Of course, it would be quicker to just clear the ice off manually, but I really wanted to see how long it would take.
Tesla Model Y heat pump takes on Model S resistive heating in defrosting showdown
Observations
I started this test at around 10:30 a.m. It was still pretty cloudy and cold out, and I knew the latter portion of the test would get some help from the Sun as it was expected to come out around noon, maybe a little bit after.
I cranked it up and set my iPhone up on a tripod, and activated the Time Lapse feature in the Camera settings.
The rest of the test was sitting and waiting.
It didn’t take long to see some difference. In fact, by the 20-minute mark, there was some notable melting of snow and ice along the sides of the windshield near the A Pillar.
However, this test was not one that was “efficient” in any manner; it took about three hours and 40 minutes to get the snow to a point where I would feel comfortable driving out in public. In no way would I do this normally; I simply wanted to see how it would do with a massive accumulation of snow.
It did well, but in the future, I’ll stick to clearing it off manually and using the Defrost setting for clearing up some ice before the gym in the morning.
Check out the video of the test below:
❄️ How long will it take for the Tesla Model Y Performance to defrost and melt ONE FOOT of snow after a blizzard?
Let’s find out: pic.twitter.com/Zmfeveap1x
— TESLARATI (@Teslarati) January 26, 2026
News
Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult
Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.
Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.
However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.
He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:
Wow just wow!
It’s 8:30PM, 29° out ice storm hailing & Tesla Robotaxi service has turned back on!
Waymo is offline & vast majority of humans are home in the storm
Ride 38 was still supervised but by far most impressive yet pic.twitter.com/1aUnJkcYm8
— David Moss (@DavidMoss) January 25, 2026
Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”
This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.
However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.
News
Tesla gives its biggest hint that Full Self-Driving in Europe is imminent
Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.
Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”
FSD now shows a new message when approaching an international border crossing.
Stayed engaged the whole way as we crossed the border and worked great in Mexico! pic.twitter.com/bDzyLnyq0g
— Zack (@BLKMDL3) January 26, 2026
Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.
This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.
Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.
This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.
Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.
Tesla Europe builds momentum with expanding FSD demos and regional launches
Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.






