Connect with us

News

SpaceX Falcon Heavy spied on the move ahead of test fire

Falcon Heavy seen rolling out to Pad 39A aboard its Transporter/Erector/Launcher (TEL) on the morning of Jan. 8. (Twitter skeerracing)

Published

on

While touring Florida’s Kennedy Space Center by bus earlier this morning (January 8), several spaceflight fans captured SpaceX’s Falcon Heavy rolling out to Pad 39A for the second time ever. Following a basic fit check and photo opportunity at the launch pad in the last week of 2017, the launch vehicle now appears to be prepped and ready for its first wet dress rehearsal (WDR) and static fire test.

If all goes well during the wet dress rehearsal’s propellant loading tests, an admittedly less than guaranteed outcome, then the WDR will likely translate into a momentous occasion for the massive rocket: the first-ever simultaneous ignition of all three of its integrated first stages and their 27 Merlin 1D engines. While relatively unique to SpaceX, the company has made a habit of testing each and every new Falcon 9 first stage with two full-up static fire ignitions, one at McGregor, Texas and the other at the vehicle’s given launch pad. Following the destructive failure of Falcon 9 during a September 2016 static fire test, SpaceX further upped their cautious procedures by removing the payload for all future static fires, lest the customer request that it remain integrated for the sake of time savings.

Unsurprisingly, no customers have since chosen to bypass SpaceX’s new risk-reducing procedures. Falcon Heavy will clearly be a return to older methods, delineated by the clear presence of the second stage and Tesla Roadster payload at its top, although this decision was almost undoubtedly driven by the fact that the payload is in no real way valuable or even important for the “customer,” SpaceX itself. The Tesla Roadster is more or less a stand-in for the traditional boilerplate satellite (read: hunk of dead metal) often launched during the inaugural flights of new rockets. The best recent example is the 2004 inaugural launch of Boeing’s Delta IV Heavy rocket, similar to Falcon Heavy in the sense that it also features a triple-core first stage. Its first launch carried a payload that was quite literally a 6000 kg (13500 lb) piece of metal paired with a number of sensors used to gather vibrational data.

Somewhat fittingly, Delta IV Heavy is aiming to conduct its own launch within the next week or so, providing the East Coast with back to back launches of the world’s two largest operational rockets. Still, as SpaceX and Elon Musk have repeatedly mentioned, Falcon Heavy is far more capable than even Delta IV Heavy: while Falcon Heavy is noticeably shorter, narrower, and thinner than Delta, it weighs almost twice as much and will sport nearly 2.5 times the thrust at liftoff.

Delta IV Heavy’s launches are undoubtedly spectacles to behold, particularly given explosive launch procedures, but the vehicle is entirely expendable, whereas Falcon Heavy will attempt recovery of all three of its first stages, and may eventually allow SpaceX to test technology that will enable second stage recovery, as well.

Advertisement

Falcon Heavy will launch a somewhat livelier version of Delta IV Heavy’s boilerplate mass-simulator with the Tesla Roadster, and the main goal is quite clearly to test the vehicle’s ability to send a payload into a trans-Martian injection (TMI) orbit, albeit likely without an actual injection into orbit around Mars at the other end. Even if the payload is somewhat silly, a successful launch to TMI would be the most literal step yet made by the commercial space company along its path to Mars. If this week’s propellant loading and static fire go as planned, launch will likely follow within a week or so – maybe two weeks given the new and unpredictable nature of testing what is more or less a prototype rocket.

Falcon Heavy can be expected to go vertical at the pad within the next 12-24 hours at most, and static fire will follow soon after. After a highly successful evening photographing the January 7 launch of Falcon 9 with Zuma, Teslarati’s launch photographer Tom Cross will be attempting to photograph the momentous test fire as it happens, and you can follow along live on Teslarati’s Instagram.

Advertisement

 

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla wins FCC approval for wireless Cybercab charging system

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.

Published

on

Credit: Tesla AI/X

Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system. 

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.

Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”

The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”

Advertisement

Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”

Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”

As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.

While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.

Advertisement

Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.

DA-26-168A1 by Simon Alvarez

Advertisement
Continue Reading

Elon Musk

Tesla posts updated FSD safety stats as owners surpass 8 billion miles

Tesla shared the milestone as adoption of the system accelerates across several markets.

Published

on

Credit: Tesla

Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles. 

Tesla shared the milestone in a post on its official X account.

“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average. 

The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.

Advertisement

At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.

Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.

As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.

During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.

Advertisement
Continue Reading

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading