News
SpaceX Falcon Heavy spied on the move ahead of test fire
While touring Florida’s Kennedy Space Center by bus earlier this morning (January 8), several spaceflight fans captured SpaceX’s Falcon Heavy rolling out to Pad 39A for the second time ever. Following a basic fit check and photo opportunity at the launch pad in the last week of 2017, the launch vehicle now appears to be prepped and ready for its first wet dress rehearsal (WDR) and static fire test.
If all goes well during the wet dress rehearsal’s propellant loading tests, an admittedly less than guaranteed outcome, then the WDR will likely translate into a momentous occasion for the massive rocket: the first-ever simultaneous ignition of all three of its integrated first stages and their 27 Merlin 1D engines. While relatively unique to SpaceX, the company has made a habit of testing each and every new Falcon 9 first stage with two full-up static fire ignitions, one at McGregor, Texas and the other at the vehicle’s given launch pad. Following the destructive failure of Falcon 9 during a September 2016 static fire test, SpaceX further upped their cautious procedures by removing the payload for all future static fires, lest the customer request that it remain integrated for the sake of time savings.
Unsurprisingly, no customers have since chosen to bypass SpaceX’s new risk-reducing procedures. Falcon Heavy will clearly be a return to older methods, delineated by the clear presence of the second stage and Tesla Roadster payload at its top, although this decision was almost undoubtedly driven by the fact that the payload is in no real way valuable or even important for the “customer,” SpaceX itself. The Tesla Roadster is more or less a stand-in for the traditional boilerplate satellite (read: hunk of dead metal) often launched during the inaugural flights of new rockets. The best recent example is the 2004 inaugural launch of Boeing’s Delta IV Heavy rocket, similar to Falcon Heavy in the sense that it also features a triple-core first stage. Its first launch carried a payload that was quite literally a 6000 kg (13500 lb) piece of metal paired with a number of sensors used to gather vibrational data.
- A GIF of Delta IV Heavy’s inaugural 2004 launch. The mission was a partial failure. (ULA)
- The mission’s DemoSat, a 6100kg hunk of metal (and two DoD nanosats). (ULA)
Somewhat fittingly, Delta IV Heavy is aiming to conduct its own launch within the next week or so, providing the East Coast with back to back launches of the world’s two largest operational rockets. Still, as SpaceX and Elon Musk have repeatedly mentioned, Falcon Heavy is far more capable than even Delta IV Heavy: while Falcon Heavy is noticeably shorter, narrower, and thinner than Delta, it weighs almost twice as much and will sport nearly 2.5 times the thrust at liftoff.
Delta IV Heavy’s launches are undoubtedly spectacles to behold, particularly given explosive launch procedures, but the vehicle is entirely expendable, whereas Falcon Heavy will attempt recovery of all three of its first stages, and may eventually allow SpaceX to test technology that will enable second stage recovery, as well.
Falcon Heavy will launch a somewhat livelier version of Delta IV Heavy’s boilerplate mass-simulator with the Tesla Roadster, and the main goal is quite clearly to test the vehicle’s ability to send a payload into a trans-Martian injection (TMI) orbit, albeit likely without an actual injection into orbit around Mars at the other end. Even if the payload is somewhat silly, a successful launch to TMI would be the most literal step yet made by the commercial space company along its path to Mars. If this week’s propellant loading and static fire go as planned, launch will likely follow within a week or so – maybe two weeks given the new and unpredictable nature of testing what is more or less a prototype rocket.
Falcon Heavy goes vertical pic.twitter.com/uG1k0WISv1
— Elon Musk (@elonmusk) January 5, 2018
Falcon Heavy can be expected to go vertical at the pad within the next 12-24 hours at most, and static fire will follow soon after. After a highly successful evening photographing the January 7 launch of Falcon 9 with Zuma, Teslarati’s launch photographer Tom Cross will be attempting to photograph the momentous test fire as it happens, and you can follow along live on Teslarati’s Instagram.
News
Tesla Cybercab production begins: The end of car ownership as we know it?
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.
Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

Credit: wudapig/Reddit< /a>
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.
The Promise – A Radical Shift in Transportation Economics
Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.
Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.
Tesla ups Robotaxi fare price to another comical figure with service area expansion
It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.
However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).
The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.
The Dark Side – Job Losses and Industry Upheaval
With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.
Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.
There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.
Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.
It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.
Balancing Act – Who Wins and Who Loses
There are two sides to this story, as there are with every other one.
The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.
Elon Musk confirms Tesla Cybercab pricing and consumer release date
Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.
Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.
A Call for Thoughtful Transition
The Cybercab’s production debut forces us to weigh innovation against equity.
If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.
Elon on the MKBHD bet, stating “Yes” to the question of whether Tesla would sell a Cybercab for $30k or less to a customer before 2027 https://t.co/sfTwSDXLUN
— TESLARATI (@Teslarati) February 17, 2026
The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.
News
Tesla Model 3 wins Edmunds’ Best EV of 2026 award
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.
This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.
The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.
The Tesla Model 3 has won Edmunds Top EV of 2026:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is… pic.twitter.com/ARFh24nnDX
— TESLARATI (@Teslarati) February 18, 2026
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
In its Top Rated EVs piece on its website, it said about the Model 3:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”
Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:
“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”
The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.
Elon Musk
Elon Musk’s xAI celebrates nearly 3,000 headcount at Memphis site
The update came in a post from the xAI Memphis account on social media platform X.
xAI has announced that it now employs nearly 3,000 people in Memphis, marking more than two years of local presence in the city amid the company’s supercomputing efforts.
The update came in a post from the xAI Memphis account on social media platform X.
In a post on X, xAI’s Memphis branch stated it has been part of the community for over two years and now employs “almost 3,000 locally to help power Grok.” The post was accompanied by a photo of the xAI Memphis team posing for a rather fun selfie.
“xAI is proud to be a member of the Memphis community for over two years. We now employ almost 3,000 locally to help power @Grok. From electricians to engineers, cooks to construction — we’re grateful for everyone on our team!” the xAI Memphis’ official X account wrote.
xAI’s Memphis facilities are home to Grok’s foundational supercomputing infrastructure, including Colossus, a large-scale AI training cluster designed to support the company’s advanced models. The site, located in South Memphis, was announced in 2024 as the home of one of the world’s largest AI compute facilities.
The first phase of Colossus was built out in record time, reaching its initial 100,000 GPU operational status in just 122 days. Industry experts such as Nvidia CEO Jensen Huang noted that this was significantly faster than the typical 2-to-4-year timeline for similar projects.
xAI chose Memphis for its supercomputing operations because of the city’s central location, skilled workforce, and existing industrial infrastructure, as per the company’s statements about its commitment to the region. The initiative aims to create hundreds of permanent jobs, partner with local businesses, and contribute to economic and educational efforts across the area.
Colossus is intended to support a full training pipeline for Grok and future models, with xAI planning to scale the site to millions of GPUs.


