News
SpaceX Falcon Heavy rocket passes static fire test three years in the making
After knocking out some figurative cobwebs, SpaceX has test-fired a Falcon Heavy rocket for the first time since June 2019.
Shortly before the static fire, NASASpaceflight’s Thomas Burghardt reported that Falcon Heavy’s first launch in 40 months – a mission for the US Space Force known as USSF-44 – had slipped from October 28th and October 31st to no earlier than (NET) 9:40 am EDT (13:40 UTC), Tuesday, November 1st. USSF-44 will be Falcon Heavy’s fourth launch since February 2018.
During its 10-second October 27th static fire, Falcon Heavy – the most capable rocket currently operational – appeared to ignite all 27 of its first stage’s Merlin 1D engines, likely producing up to 2350 tons (5.18 million lbf) of thrust. Only three liquid-powered rockets (N1, Saturn V, & Energia) and one rocket augmented by solid rocket boosters (the Space Shuttle) have produced more thrust at sea level, and the most recently active of those four vehicles (NASA’s Space Shuttle) was permanently retired in 2011.
NASA’s Space Launch System (SLS) rocket will retake the crown when it (hopefully) debuts later this year, but Falcon Heavy will remain the most powerful commercially-available rocket until SpaceX’s own Starship debuts. After Starship debuts later this year or early next, Falcon Heavy will continue on as the second most powerful commercial rocket for the indefinite future.
After more than three years of downtime, SpaceX unsurprisingly appeared to run into minor issues while preparing Falcon Heavy for a full wet dress rehearsal and static fire. SpaceX rolled the rocket – sans payload fairing – out to the launch pad late on October 25th, at which point the launch target had already slipped to October 31st. Falcon Heavy then sat horizontally for about 30 hours before SpaceX raised it vertical and fully attached the rocket and transporter/erector to the pad’s ground systems.
Another 12 hours of work later, SpaceX was ready to begin static fire test operations, and Falcon Heavy fired up at 8 pm EDT on October 27th, 50 hours after it rolled out. During Falcon 9’s most recent satellite launch out of Pad 39A, the rocket lifted off about 30 hours after rollout. While preparing for Falcon Heavy Block 5’s first launch (Flight 2 overall) in April 2019, the rocket went vertical 12 hours after rollout – 18 hours faster than Flight 4. Ahead of Flight 3 in June 2019, Falcon Heavy completed a static fire test 25 hours after rolling out – 25 hours faster than Flight 4.


Before it can launch, Falcon Heavy will have to return to LC-39A’s hangar to have its fairing (containing two classified USSF-44 satellites) installed and then return to the pad, repeating the rollout process. Falcon Heavy Flight 3 holds the record (5d 4h) for the shortest gap between a static fire and launch. Falcon Heavy’s updated launch target is 4 days and 14 hours after its static fire, meaning that SpaceX will have to break that record to launch USSF-44 as planned.
Update: The USSF-44 payload fairing – satellites safely encapsulated inside it – headed to Pad 39A less than four hours after Falcon Heavy Flight 4’s static fire.
Regardless, with a successful static fire under its belt, Falcon Heavy’s fourth launch is now all but guaranteed to occur within the next 5-10 days. The rocket’s fifth launch – carrying ViaSat’s first ViaSat-3 communications satellite – could follow as early as December 2022, and another four Falcon Heavy launches are currently scheduled between January and August 2023.
News
Tesla seen as early winner as Canada reopens door to China-made EVs
Tesla had already prepared for Chinese exports to Canada in 2023 by equipping its Shanghai Gigafactory to produce a Canada-specific version of the Model Y.
Tesla seems poised to be an early beneficiary of Canada’s decision to reopen imports of Chinese-made electric vehicles, following the removal of a 100% tariff that halted shipments last year.
Thanks to Giga Shanghai’s capability to produce Canadian-spec vehicles, it might only be a matter of time before Tesla is able to export vehicles to Canada from China once more.
Under the new U.S.–Canada trade agreement, Canada will allow up to 49,000 vehicles per year to be imported from China at a 6.1% tariff, with the quota potentially rising to 70,000 units within five years, according to Prime Minister Mark Carney.
Half of the initial quota is reserved for vehicles priced under CAD 35,000, a threshold above current Tesla models, though the electric vehicle maker could still benefit from the rule change, as noted in a Reuters report.
Tesla had already prepared for Chinese exports to Canada in 2023 by equipping its Shanghai Gigafactory to produce a Canada-specific version of the Model Y. That year, Tesla began shipping vehicles from Shanghai to Canada, contributing to a sharp 460% year-over-year increase in China-built vehicle imports through Vancouver.
When Ottawa imposed a 100% tariff in 2024, however, Tesla halted those shipments and shifted Canadian supply to its U.S. and Berlin factories. With tariffs now reduced, Tesla could quickly resume China-to-Canada exports.
Beyond manufacturing flexibility, Tesla could also benefit from its established retail presence in Canada. The automaker operates 39 stores across Canada, while Chinese brands like BYD and Nio have yet to enter the Canadian market directly. Tesla’s relatively small lineup, which is comprised of four core models plus the Cybertruck, allows it to move faster on marketing and logistics than competitors with broader portfolios.
Elon Musk
Tesla confirms that work on Dojo 3 has officially resumed
“Now that the AI5 chip design is in good shape, Tesla will restart work on Dojo 3,” Elon Musk wrote in a post on X.
Tesla has restarted work on its Dojo 3 initiative, its in-house AI training supercomputer, now that its AI5 chip design has reached a stable stage.
Tesla CEO Elon Musk confirmed the update in a recent post on X.
Tesla’s Dojo 3 initiative restarted
In a post on X, Musk said that with the AI5 chip design now “in good shape,” Tesla will resume work on Dojo 3. He added that Tesla is hiring engineers interested in working on what he expects will become the highest-volume AI chips in the world.
“Now that the AI5 chip design is in good shape, Tesla will restart work on Dojo3. If you’re interested in working on what will be the highest volume chips in the world, send a note to AI_Chips@Tesla.com with 3 bullet points on the toughest technical problems you’ve solved,” Musk wrote in his post on X.
Musk’s comment followed a series of recent posts outlining Tesla’s broader AI chip roadmap. In another update, he stated that Tesla’s AI4 chip alone would achieve self-driving safety levels well above human drivers, AI5 would make vehicles “almost perfect” while significantly enhancing Optimus, and AI6 would be focused on Optimus and data center applications.
Musk then highlighted that AI7/Dojo 3 will be designed to support space-based AI compute.
Tesla’s AI roadmap
Musk’s latest comments helped resolve some confusion that emerged last year about Project Dojo’s future. At the time, Musk stated on X that Tesla was stepping back from Dojo because it did not make sense to split resources across multiple AI chip architectures.
He suggested that clustering large numbers of Tesla AI5 and AI6 chips for training could effectively serve the same purpose as a dedicated Dojo successor. “In a supercomputer cluster, it would make sense to put many AI5/AI6 chips on a board, whether for inference or training, simply to reduce network cabling complexity & cost by a few orders of magnitude,” Musk wrote at the time.
Musk later reinforced that idea by responding positively to an X post stating that Tesla’s AI6 chip would effectively be the new Dojo. Considering his recent updates on X, however, it appears that Tesla will be using AI7, not AI6, as its dedicated Dojo successor. The CEO did state that Tesla’s AI7, AI8, and AI9 chips will be developed in short, nine-month cycles, so Dojo’s deployment might actually be sooner than expected.
Elon Musk
Elon Musk’s xAI brings 1GW Colossus 2 AI training cluster online
Elon Musk shared his update in a recent post on social media platform X.
xAI has brought its Colossus 2 supercomputer online, making it the first gigawatt-scale AI training cluster in the world, and it’s about to get even bigger in a few months.
Elon Musk shared his update in a recent post on social media platform X.
Colossus 2 goes live
The Colossus 2 supercomputer, together with its predecessor, Colossus 1, are used by xAI to primarily train and refine the company’s Grok large language model. In a post on X, Musk stated that Colossus 2 is already operational, making it the first gigawatt training cluster in the world.
But what’s even more remarkable is that it would be upgraded to 1.5 GW of power in April. Even in its current iteration, however, the Colossus 2 supercomputer already exceeds the peak demand of San Francisco.
Commentary from users of the social media platform highlighted the speed of execution behind the project. Colossus 1 went from site preparation to full operation in 122 days, while Colossus 2 went live by crossing the 1-GW barrier and is targeting a total capacity of roughly 2 GW. This far exceeds the speed of xAI’s primary rivals.
Funding fuels rapid expansion
xAI’s Colossus 2 launch follows xAI’s recently closed, upsized $20 billion Series E funding round, which exceeded its initial $15 billion target. The company said the capital will be used to accelerate infrastructure scaling and AI product development.
The round attracted a broad group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group. Strategic partners NVIDIA and Cisco also continued their support, helping xAI build what it describes as the world’s largest GPU clusters.
xAI said the funding will accelerate its infrastructure buildout, enable rapid deployment of AI products to billions of users, and support research tied to its mission of understanding the universe. The company noted that its Colossus 1 and 2 systems now represent more than one million H100 GPU equivalents, alongside recent releases including the Grok 4 series, Grok Voice, and Grok Imagine. Training is also already underway for its next flagship model, Grok 5.