Connect with us

News

SpaceX Falcon Heavy rocket passes static fire test three years in the making

The first Falcon Heavy rocket is pictured during its own static fire test in early 2018. (SpaceX)

Published

on

After knocking out some figurative cobwebs, SpaceX has test-fired a Falcon Heavy rocket for the first time since June 2019.

Shortly before the static fire, NASASpaceflight’s Thomas Burghardt reported that Falcon Heavy’s first launch in 40 months – a mission for the US Space Force known as USSF-44 – had slipped from October 28th and October 31st to no earlier than (NET) 9:40 am EDT (13:40 UTC), Tuesday, November 1st. USSF-44 will be Falcon Heavy’s fourth launch since February 2018.

During its 10-second October 27th static fire, Falcon Heavy – the most capable rocket currently operational – appeared to ignite all 27 of its first stage’s Merlin 1D engines, likely producing up to 2350 tons (5.18 million lbf) of thrust. Only three liquid-powered rockets (N1, Saturn V, & Energia) and one rocket augmented by solid rocket boosters (the Space Shuttle) have produced more thrust at sea level, and the most recently active of those four vehicles (NASA’s Space Shuttle) was permanently retired in 2011.

NASA’s Space Launch System (SLS) rocket will retake the crown when it (hopefully) debuts later this year, but Falcon Heavy will remain the most powerful commercially-available rocket until SpaceX’s own Starship debuts. After Starship debuts later this year or early next, Falcon Heavy will continue on as the second most powerful commercial rocket for the indefinite future.

After more than three years of downtime, SpaceX unsurprisingly appeared to run into minor issues while preparing Falcon Heavy for a full wet dress rehearsal and static fire. SpaceX rolled the rocket – sans payload fairing – out to the launch pad late on October 25th, at which point the launch target had already slipped to October 31st. Falcon Heavy then sat horizontally for about 30 hours before SpaceX raised it vertical and fully attached the rocket and transporter/erector to the pad’s ground systems.

Advertisement

Another 12 hours of work later, SpaceX was ready to begin static fire test operations, and Falcon Heavy fired up at 8 pm EDT on October 27th, 50 hours after it rolled out. During Falcon 9’s most recent satellite launch out of Pad 39A, the rocket lifted off about 30 hours after rollout. While preparing for Falcon Heavy Block 5’s first launch (Flight 2 overall) in April 2019, the rocket went vertical 12 hours after rollout – 18 hours faster than Flight 4. Ahead of Flight 3 in June 2019, Falcon Heavy completed a static fire test 25 hours after rolling out – 25 hours faster than Flight 4.

Falcon Heavy Flight 2 – the first Block 5 version of the rocket – sits horizontally at Pad 39A. (Pauline Acalin)
Falcon Heavy Flight 3. (NASA)

Before it can launch, Falcon Heavy will have to return to LC-39A’s hangar to have its fairing (containing two classified USSF-44 satellites) installed and then return to the pad, repeating the rollout process. Falcon Heavy Flight 3 holds the record (5d 4h) for the shortest gap between a static fire and launch. Falcon Heavy’s updated launch target is 4 days and 14 hours after its static fire, meaning that SpaceX will have to break that record to launch USSF-44 as planned.

Update: The USSF-44 payload fairing – satellites safely encapsulated inside it – headed to Pad 39A less than four hours after Falcon Heavy Flight 4’s static fire.

Regardless, with a successful static fire under its belt, Falcon Heavy’s fourth launch is now all but guaranteed to occur within the next 5-10 days. The rocket’s fifth launch – carrying ViaSat’s first ViaSat-3 communications satellite – could follow as early as December 2022, and another four Falcon Heavy launches are currently scheduled between January and August 2023.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Cybercab production starts Q2 2026, Elon Musk confirms

Elon Musk highlighted that the fully autonomous vehicle will be the first Tesla designed specifically for unsupervised self-driving.

Published

on

Credit: Tesla/X

Tesla CEO Elon Musk confirmed that production of the company’s autonomous Cybercab will begin in April 2026, and its production targets will be quite ambitious. 

Speaking at Tesla’s 2025 Annual Shareholder Meeting, Musk highlighted that the fully autonomous vehicle will be the first Tesla designed specifically for unsupervised self-driving.

A robotaxi built for an autonomous world

Musk described the Cybercab as a clean-slate design optimized for autonomy, with no steering wheel, pedals, or side mirrors. “It’s very much optimized for the lowest cost per mile in an autonomous mode,” Musk said, adding that every Tesla produced in recent years already carries the hardware needed for full self-driving.

The Cybercab will be assembled at Giga Texas and will serve as the company’s flagship entry into the commercial robotaxi market. Musk emphasized that the project represents Tesla’s next evolutionary step in combining vehicle manufacturing, artificial intelligence, and mobility services.

One Cybercab every ten seconds

Musk reiterated that the Cybercab’s production process is more closely modeled on consumer electronics assembly than on traditional automotive manufacturing. This should pave the way for outputs that far exceed conventional automotive products.

Advertisement

“That production is happening right here in this factory, and we’ll be starting production in April next year. The manufacturing system is unlike any other car. The manufacturing system of the Cybercab, it’s closer to a high volume consumer electronics device than it is a car manufacturing line. So the net result is that I think we should be able to achieve, I think, ultimately, less than a 10-second cycle time, basically a unit every 10 seconds.

“What that would mean is you could get on a line that would normally produce, say, 500,000 cars a year at a one minute cycle time, Model Y. This would be maybe as much as 2 million or 3 million, maybe ultimately it’s theoretically possible to achieve a 5 million unit production line if you can get to the 5-second cycle time,” the CEO said.

Continue Reading

News

Tesla China expecting full FSD approval in Q1 2026: Elon Musk

The CEO shared the update during Tesla’s Annual Shareholder Meeting.

Published

on

Credit: Tesla Europe & Middle East/X

Elon Musk has provided a concrete estimated date for Full Self-Driving’s (FSD) full approval in China. While a version of the system has been deployed to some users in China, the company only holds partial approval for FSD features in the country.

The CEO shared the update during Tesla’s Annual Shareholder Meeting, where stockholders also voted to approve Elon Musk’s ambitious 2025 performance award.

Elon Musk’s China FSD update

During the meeting, Elon Musk stated that Tesla expects to secure full regulatory approval for its Full Self-Driving (FSD) system in China by February or March 2026. This would mark a potential breakthrough in one of the world’s most competitive EV markets.

“We have partial approval in China, and we hopefully will have full approval in China around February or March or so. That’s what they’ve told us,” Musk said.

Tesla’s rollout of FSD features in China began in February 2025 under update 2024.45.32.12, which introduced what the company locally called “Autopilot automatic assisted driving on urban roads.” While not officially branded as FSD, the feature mirrored Tesla’s inner-city capabilities.

Advertisement

Positive feedback from China

Feedback from local drivers suggests strong real-world performance for the company’s “Autopilot automatic assisted driving on urban roads” feature. One driver who used the system for two months described it as “well-calibrated and human-like,” adding that it “slows appropriately on narrow streets and picks up speed on major roads.” The Tesla owner further reported zero safety interventions over his testing period, calling the system “almost too polite” when encountering pedestrians and scooters.

A Tesla Model 3 driver was also able to drive to the base camp of Mount Everest from Henan Province, a journey of about 4,000 kilometers (2,485 miles), using “Autopilot automatic assisted driving on urban roads.” The driver’s trip was livestreamed on Chinese social media, where it attracted a lot of interest from viewers. 

Continue Reading

Elon Musk

Tesla Optimus’ pilot line will already have an incredible annual output

And this would just be the beginning. In the future, Musk mused that Optimus’ production could literally be out of this world.

Published

on

tesla-optimus-pilot-production-line
(Credit: Tesla)

During the 2025 Tesla Annual Shareholder Meeting, Elon Musk provided a teaser of the company’s targets for Optimus’s annual production. As per the CEO, Optimus’ pilot line will be capable of producing up to one million units annually. 

And this would just be the beginning. In the future, Musk mused that Optimus’ production could literally be out of this world.

Musk targets world’s fastest production ramp for Optimus robots

Tesla’s first Optimus line will be built in Fremont, California, and is projected to produce around one million robots per year. Other facilities like Gigafactory Texas could scale Optimus production to 10 million units annually. Musk even joked that a 100-million-unit line might one day be built “on Mars.” With Optimus, Musk stated that Tesla is looking to achieve a historic production ramp. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one million unit production line in Fremont. And that’s Line One. And then a 10-million-unit-per-year production line here (at Giga Texas). I don’t know where we’re going to put the one hundred million unit production line, maybe on Mars. But I think it’s going to literally get to one hundred million a year, maybe even a billion a year,” Musk said.

Optimus and sustainable abundance

Tesla’s Master Plan Part IV is all about sustainable abundance, and Musk highlighted that the humanoid robot will play a huge role in his vision for the future. He noted that Optimus’ mass production could redefine economic and social systems worldwide and open up premium services for everyone across the globe. 

Advertisement

“People often talk about eliminating poverty or giving everyone amazing medical care. There’s only one way to do that, and that’s with the Optimus robot,” Musk said. “With humanoid robots, you can actually give everyone amazing medical care. In terms of Optimus will be more precise. Optimus will ultimately be better than the best human surgeon with a level of precision that is beyond human… People always talked about eliminating poverty, but actually, Optimus will actually eliminate poverty,” Musk said.

Continue Reading

Trending