News
SpaceX set to launch its first previously-flown Block 5 rocket tonight
At the same time as SpaceX is readying its first Falcon 9 Block 5 booster reuse, the company’s second flight-proven Block 5 launch is already fast approaching and could be a strong contender to beat the company’s record of 72 days between launches of the same rocket.
A critical milestone for Falcon 9 Block 5
Formerly known as Telkom 4, SpaceX’s 1:18 AM EDT August 7th launch of the Merah Putih (Red and White in Indonesian) communications satellite will place the 5800 kg (12,800 lb) craft into a high-energy geostationary transfer orbit and will become the second heaviest GTO launch completed by SpaceX while still recovering the Falcon 9 booster. More importantly, however, Telkom 4 will also mark a critical milestone for Falcon 9 as the first reuse of a Block 5 booster.
https://twitter.com/_TomCross_/status/1025074341040533504
Designed to be many times more reusable and reliable than the already impressive Falcon 9 Full Thrust iterations preceding it, pathfinder booster B1046 could be capable of flying anywhere from 5, 10, or even 100 launches over the course of its flightworthy lifespan. It very well may require some considerable refinements to approach the true goal of orbital Falcon 9 launches with zero refurbishments between flights. CEO Elon Musk discussed those aspirations just before Block 5’s launch debut on May 11:
“We need to basically take the rocket from its landing pad, rotate it horizontal, stow the legs. Take it to the launch pad, attach an upper stage, attach a fairing with a payload. Then transport it out the launch pad, rotate it vertically, load propellant, and fly. And in principle, that is literally all that’s necessary.” – Elon Musk
This is understandably SpaceX’s goal, and it’s unlikely to happen just a few months after Block 5’s debut. Nevertheless, SpaceX appears to be already pushing the envelope of what they’ve previously accomplished with reusable Falcon 9s.
- B1046 lifts off for the first time on May 4th, 2018. (Teslarati)
- Falcon 9 B1046 returned to Port Canaveral aboard drone ship OCISLY on May 15. It will launch for the second time on August 4. (Tom Cross)
- Soon after, B1046 was spotted on its way to a refurbishment facility around a week after its May 11 launch debut. (Instagram /u/tersco)
Breaking records four months after launch debut
While B1046 is tracking towards a booster turnaround of roughly 92 days, compared with the current Block 4 booster record of 72 days, it’s worth noting that more than a majority of that time was likely spent in a state of unique analysis for the inaugural Block 5 rocket, involving extensive disassembly. As stated by Musk, “we need to take [B1046] apart to confirm that it does not need to be taken apart.” He also expected that teardown analysis to be “very rigorous”, indicating that B1046 probably deserves the crown for booster turnaround so long as one only accounts for time spent in transport and undergoing refurbishment.
Still, winning by a technicality is never any fun. On that note, SpaceX appears to be tracking towards a true record-breaking rocket reuse, potentially as few as 40 days between launches. Not one to let its other launch facilities be left out, this record-breaking turnaround attempt will occur on the West Coast with Falcon 9 B1048, the recovery of which has been extensively documented by Teslarati photographer Pauline Acalin over the last two weeks. NASASpaceflight.com confirmed that SpaceX intends to reuse B1048 for this mission for the NET mid-September launch and the record ~50 days between flights could help explain an unusually extensive and lengthy analysis of the rocket after it was lifted off drone ship Just Read The Instructions and placed on its dockside recovery stand.
- B1047 before the launch of Telstar 19V. (Tom Cross)
- Sooty B1047 arrives at Pad 39A’s horizontal integration facility (HIF), July 31st. (Reddit – Kent767)
- Falcon 9 B1048 ahead of its launch debut, July 25th. (Pauline Acalin)
- After a successful launch and landing, B1048 stands tall in Port of San Pedro before being lowered and transported for its next launch. (Pauline Acalin)
After 10 days of recovery operations and analysis, B1048 was transported to SpaceX’s Hawthorne factory on August 6th, where it will presumably undergo refurbishment in preparation for its next launch. If B1046 and B1048 are representative samples of SpaceX’s growing rocket fleet, their stunningly quick turnarounds (especially for a largely new rocket that debuted less than 3-4 months prior) are likely a sign of things to come as SpaceX gets a handle on the real-world capabilities of its robust Block 5 upgrade.
It’s entirely possible that every Block 5 reuse to come can and will break the previous launch turnaround record, at least up to the point that SpaceX demonstrates a true 24-hour turnaround sometime next year. Stay tuned…
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet (including fairing catcher Mr Steven) check out our brand new LaunchPad and LandingZone newsletters!
Elon Musk
Elon Musk’s xAI brings 1GW Colossus 2 AI training cluster online
Elon Musk shared his update in a recent post on social media platform X.
xAI has brought its Colossus 2 supercomputer online, making it the first gigawatt-scale AI training cluster in the world, and it’s about to get even bigger in a few months.
Elon Musk shared his update in a recent post on social media platform X.
Colossus 2 goes live
The Colossus 2 supercomputer, together with its predecessor, Colossus 1, are used by xAI to primarily train and refine the company’s Grok large language model. In a post on X, Musk stated that Colossus 2 is already operational, making it the first gigawatt training cluster in the world.
But what’s even more remarkable is that it would be upgraded to 1.5 GW of power in April. Even in its current iteration, however, the Colossus 2 supercomputer already exceeds the peak demand of San Francisco.
Commentary from users of the social media platform highlighted the speed of execution behind the project. Colossus 1 went from site preparation to full operation in 122 days, while Colossus 2 went live by crossing the 1-GW barrier and is targeting a total capacity of roughly 2 GW. This far exceeds the speed of xAI’s primary rivals.
Funding fuels rapid expansion
xAI’s Colossus 2 launch follows xAI’s recently closed, upsized $20 billion Series E funding round, which exceeded its initial $15 billion target. The company said the capital will be used to accelerate infrastructure scaling and AI product development.
The round attracted a broad group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group. Strategic partners NVIDIA and Cisco also continued their support, helping xAI build what it describes as the world’s largest GPU clusters.
xAI said the funding will accelerate its infrastructure buildout, enable rapid deployment of AI products to billions of users, and support research tied to its mission of understanding the universe. The company noted that its Colossus 1 and 2 systems now represent more than one million H100 GPU equivalents, alongside recent releases including the Grok 4 series, Grok Voice, and Grok Imagine. Training is also already underway for its next flagship model, Grok 5.
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.






