Connect with us

News

SpaceX on track for last Cargo Dragon launch, first Falcon 9 land landing in months

A Falcon 9 booster prepares to land at SpaceX Cape Canaveral Landing Zone 1 (LZ-1) in 2018. (SpaceX)

Published

on

SpaceX is hours away from its Cargo Dragon (Dragon 1) spacecraft’s last space station resupply mission, a historic launch that will also include a Falcon 9 booster’s first land landing attempt in more than half a year.

Scheduled to lift off no earlier than 11:50 pm EST (04:50 UTC) on March 6th (March 7th UTC), flight-proven Falcon 9 booster B1059 rolled out to SpaceX Launch Complex 40 (LC-40) – part of Cape Canaveral Air Force Station (CCAFS) – on Thursday afternoon. Carrying twice-flown Dragon capsule C112, set to smash SpaceX’s orbital spacecraft turnaround record, tonight’s launch will mark SpaceX’s last International Space Station (ISS) mission under its first NASA Commercial Resupply Services (CRS) contract – awarded in 2008.

Aside from Cargo Dragon’s historic final launch and record spacecraft turnaround time, CRS-20 will also mark SpaceX’s first attempted land landing – meaning a Falcon 9 booster landing at LZ-1 or LZ-2 – since July 2019. Thanks in part to SpaceX’s Starlink launch priorities and Falcon Heavy’s intermittent launch cadence, the sonic booms of Falcon booster reentries have been a relative rarity at Landing Zones for the last half-year. CRS-20 will thankfully end that faux-drought and may even be followed just weeks later by a second Falcon booster return to LZ-1.

The last Cargo Dragon (Dragon 1) capsule scheduled to launch was likely shipped to from California to Florida in mid-February. (SpaceX)

A decade of success in orbit

Over Dragon 1’s decade of service, the spacecraft has successfully delivered more than 40 metric tons (90,000 lb) of cargo to the International Space Station (ISS) and returned almost as much from the station to Earth – still the only operational spacecraft capable of doing so since the Space Shuttle’s 2011 retirement.

If CRS-20 goes as planned, NASA will have awarded SpaceX a total of $3.1B for its finished CRS Phase 1 contract, translating to an average of $147M apiece for 21 missions (including the CRS-7 failure and Dragon’s first space station demo mission) to the ISS.

Pictured here, Cargo Dragon C102 became the first commercial spacecraft to rendezvous and berth with the ISS in May 2012. CRS-1, Dragon’s first operational resupply mission, launched six just months later. (NASA)

In other words, each kilogram of cargo Falcon 9 and Dragon delivered to the space station wound up costing NASA a bit less than $80,000, admittedly eye-watering but quite favorable compared to the Space Shuttle’s ~$340,000/kg (assuming program cost of $240B (c. 2020) and STS-135’s ~5300 kg of cargo).

Small steps towards full reusability

SpaceX’s CRS Phase 1 successes have also helped NASA cautiously accept flight-proven commercial rockets and spacecraft as the company has gradually introduced Falcon 9 booster and Cargo Dragon capsule reusability. Now, more than two years since SpaceX’s first capsule (June 2017) and booster reuses (December 2017) on NASA CRS missions, the company has launched two Dragon capsules to the space station for the third time and flown Dragons on flight-proven boosters four times.

Advertisement
-->

CRS-20 will mark the third time a Cargo Dragon capsule (C112) flies a third orbital resupply mission, as well as the fifth time a CRS mission will launch on a flight-proven booster (B1059). Compared to the sheer scale and ambition of SpaceX’s next-generation, fully-reusable Starship and Super Heavy launch system, Dragon and Falcon 9 may seem rather diminutive. However, it’s hard to exaggerate just how much reusability expertise SpaceX has gained through their development.

And after launch. (Richard Angle)
B1059 returned to Port Canaveral on December 7th, 2019 and will launch CRS-20 – its second Dragon mission – almost exactly three months later. (Richard Angle)
Cargo Dragon C112 launched for the second time in December 2018, supporting NASA’s CRS-16 resupply mission. (Teslarati)
A great deal of work undoubtedly remains, but SpaceX’s Dragon spacecraft and Falcon rockets are the foundation upon which Starship will (hopefully) one day succeed. (SpaceX)

Set to take over resupply missions and ferry astronauts to and from the space station, SpaceX and CEO Elon Musk already considered Dragon 2 (Crew Dragon) to be dramatically simpler, faster, and cheaper to reuse. Starship will ultimately build off those significant improvements, enabling another leap (or several) forward. Perhaps just as importantly, Falcon and Dragon reuse will likely continue to make profound political and bureaucratic inroads over the next 5-10 years, gradually eroding and reshaping the status quo. Their progress will thus hopefully set both the technical and societal stages for widespread success and acceptance by the time Starship can be declared operational.

Weather is currently 60% GO for CRS-20, and the rocket and spacecraft are likely just hours from going vertical at the LC-40 launch pad. As always, tune into SpaceX’s official webcast approximately 15 minutes before liftoff to catch the Falcon 9 launch and landing live.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla hints toward Premium Robotaxi offering with Model S testing

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading