Connect with us

News

SpaceX launches 3000th Starlink satellite

SpaceX's 3000th Starlink satellite streaks into orbit. (Richard Angle)

Published

on

SpaceX has successfully launched its 3000th Starlink satellite as part of Falcon 9’s 54th dedicated mission for the low Earth orbit (LEO) internet constellation.

After high upper-level winds forced SpaceX to call off a launch attempt three hours prior, Falcon 9 lifted off from NASA Kennedy Space Center (KSC) Launch Complex 39A at 10:14 pm EDT (02:14 UTC), carrying another 52 new Starlink V1.5 satellites inside the rocket’s flight-proven payload fairing. Like the fairing halves, both of which had already supported two orbital-class launches, the Falcon 9 booster (B1073) SpaceX assigned to the mission was also flying for the third time.

For the most part, Falcon 9 performed nominally. The booster lifted an expendable upper stage and the enclosed payload most of the way out of Earth’s atmosphere before separating and heading back to Earth. Falcon 9’s upper stage was as perfect as ever, boosting the Starlink stack the rest of the way into a low and elliptical parking orbit, where it eventually spun itself end over end and deployed all 52 satellites at once.

Falcon 9 booster B1073 made it through its reentry and landing burns without issue and safely touched down on drone ship A Shortfall Of Gravitas (ASOG) about nine minutes after liftoff. While that landing was ultimately a success, B1073’s accuracy was not exactly flawless and the booster came to a halt with two of its four legs unusually close to the edge of the drone ship’s deck. Had the booster missed the bullseye by just 5-10 more feet, it could have easily landed with one or two feet off the deck and tipped into the Atlantic.

Nonetheless, the landing was successful and SpaceX should have no issue recovering the booster. In any other context, it would barely be worth noting, but flawless Starlink launches with near-bullseye landings have become such a frequent and routine occurrence that any departure from that norm has become interesting.

Advertisement
-->
B1073’s moderately off-center landing. (SpaceX)

Starlink 4-26 (referring to the 26th batch of Group or Shell 4 satellites) was SpaceX’s 54th dedicated Starlink launch overall and 21st Starlink launch in 2022 alone. The mission also carried SpaceX’s 3000th Starlink satellite into orbit, a milestone so far removed from the next largest satellite constellation that it’s now more reasonable to compare Starlink to every other satellite currently in orbit. Of the 3009 Starlink satellites SpaceX has now successfully launched since 2018, 2750 are still in orbit. Assuming all 52 Starlink 4-26 satellites are healthy, astrophysicist and space object tracker Jonathan McDowell estimates that SpaceX has 2714 working satellites in orbit.

Excluding 75 prototype satellites launched over the years, all but 5 of which have since deorbited, 92.3% of all operational Starlink satellites launched by SpaceX since November 2019 are still working in orbit. While Starlink V1.0’s 7.7% satellite failure rate is far from desirable, SpaceX has made clear progress with its V1.5 design, which began launching in September 2021. Excluding 38 satellites that were lost when a solar storm caused Earth’s atmosphere to expand, unexpectedly increasing drag to uncontrollable levels, only 10 of the 1218 Starlink V1.5 satellites SpaceX has launched have failed and prematurely reentered for technical reasons – a failure rate of 0.9%.

Starlink V1.5 (left) vs. Starlink V1.0.

If SpaceX’s V1.5 satellites continue to demonstrate excellent reliability as they reach ages similar to their V1.0 predecessors, it will bode well for the sustainability and predictability of current and future Starlink constellations. Meanwhile, the roughly 2270 Starlink satellites that are currently operational continue to deliver internet services to hundreds of thousands of customers in countries around the world, improving the lives of countless people.

According to Next Spaceflight, SpaceX has up to five more Starlink launches scheduled this month as it continues to relentlessly pursue a record-breaking launch cadence with its Falcon 9 rocket. Up next, Starlink 3-3 could launch from California as early as August 12th. Photographer Ben Cooper reports that another East Coast Starlink mission is working towards a “mid-August” launch soon after.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla is not sparing any expense in ensuring the Cybercab is safe

Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.

Published

on

Credit: @JoeTegtmeyer/X

The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility. 

Intensive crash tests

As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays. 

Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads. 

Prioritizing safety

With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.

Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.

Advertisement
-->
Continue Reading

Elon Musk

Tesla’s Elon Musk gives timeframe for FSD’s release in UAE

Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year. 

Published

on

Tesla CEO Elon Musk stated on Monday that Full Self-Driving (Supervised) could launch in the United Arab Emirates (UAE) as soon as January 2026. 

Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year. 

Musk’s estimate

In a post on X, UAE-based political analyst Ahmed Sharif Al Amiri asked Musk when FSD would arrive in the country, quoting an earlier post where the CEO encouraged users to try out FSD for themselves. Musk responded directly to the analyst’s inquiry. 

“Hopefully, next month,” Musk wrote. The exchange attracted a lot of attention, with numerous X users sharing their excitement at the idea of FSD being brought to a new country. FSD (Supervised), after all, would likely allow hands-off highway driving, urban navigation, and parking under driver oversight in traffic-heavy cities such as Dubai and Abu Dhabi.

Musk’s comments about FSD’s arrival in the UAE were posted following his visit to the Middle Eastern country. Over the weekend, images were shared online of Musk meeting with UAE Defense Minister, Deputy Prime Minister, and Dubai Crown Prince HH Sheikh Hamdan bin Mohammed. Musk also posted a supportive message about the country, posting “UAE rocks!” on X.

Advertisement
-->

FSD recognition

FSD has been getting quite a lot of support from foreign media outlets. FSD (Supervised) earned high marks from Germany’s largest car magazine, Auto Bild, during a test in Berlin’s challenging urban environment. The demonstration highlighted the system’s ability to handle dense traffic, construction sites, pedestrian crossings, and narrow streets with smooth, confident decision-making.

Journalist Robin Hornig was particularly struck by FSD’s superior perception and tireless attention, stating: “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention.” Only one intervention was needed when the system misread a route, showcasing its maturity while relying on vision-only sensors and over-the-air learning.

Continue Reading

News

Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco

“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.

Published

on

Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage. 

While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.

Tesla FSD handles total darkness

The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.

Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post. 

Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.  

Advertisement
-->

Waymo’s blackout struggles

Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out. 

In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”

A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”

Continue Reading