Connect with us
A stack of 60 Starlink v0.9 satellites are prepared for their orbital launch debut in May 2019. (SpaceX) A stack of 60 Starlink v0.9 satellites are prepared for their orbital launch debut in May 2019. (SpaceX)

News

SpaceX’s deploys 60-satellite Starlink blob, all spacecraft successfully phone home

A stack of the first 60 Starlink satellites. (SpaceX)

Published

on

SpaceX’s first 60 “production-design” Starlink satellites have been successfully placed in orbit, kicking off a constellation beta test at an unprecedented scale. According to CEO Elon Musk, all spacecraft also managed to successfully ‘phone home’ after separation.

The company’s Redmond satellite operators still need to verify that all spacecraft are functional and healthy after a Falcon 9 launch and chaotic deployment from the rocket’s upper stage, but the riskiest part of the mission is now arguably behind SpaceX. What remains is essentially a massive, hardware-rich test of SpaceX’s Starlink satellite constellation, ranging from granular flight testing of individual components to an effective simulation of a full constellation’s operations.

In support of those tests, SpaceX has already received permission from the FCC to begin setting up a number of ground stations and user terminals across the US. Testing will begin on a relatively small scale but will rapidly expand as FCC permissions roll in and the basics of the first 60 Starlink satellites’ operational capabilities are verified.

According to sources familiar with the matter who spoke under the condition of anonymity, SpaceX will most likely begin commercial testing of its Starlink constellation much like Tesla, using its significant workforce (~6000 people) as beta testers. The sources didn’t know how many launches it would take before that internal testing kicks off, but it’s safe to say that SpaceX will need at least a few hundred satellites in orbit to provide uninterrupted broadband service over a few swaths of the US.

A wild satellite ride

A little over one hour after launch, SpaceX deployed all 60 Starlink satellites simultaneously, producing a bizarre blob of spacecraft that appeared to slowly begin to separate, almost like a zipper unzipping. CEO Elon Musk noted on May 15th that there was “a chance” that satellites would bump into each other during deployment. After watching the actual act, it’s safe to say that many of the 60 satellites almost certainly bumped into each other after separating from Falcon 9, albeit very slowly.

60 Starlink satellites deployed from Falcon 9’s upper stage in a truly bizarre fashion, moving away from the rocket like an 18 ton blob of spacecraft. (SpaceX)

Starlink’s deployment mechanism is easily the most SpaceX-reminiscent thing SpaceX has ever done. It certainly isn’t pretty and your author would love nothing more than to immediately head to orbit to evenly distribute the satellites (oh, the asymmetry ?). And yet, it seems likely that the chaotic blob deployment will ultimately be a success, getting rid of the wasted mass of a dispenser, speeding up deployment, and offloading the need for accuracy from Falcon 9 S2 to the satellites themselves.

Starlink satellites are propelled by krypton-fueled electric thrusters, also known as ion or Hall Effect thrusters. (SpaceX)
A render of a full stack of Starlink satellites. (SpaceX)

By designing the satellites from the ground up to handle minor bumps and more significant mechanical loads during launch and deployment, SpaceX can forgo the hassle of treating each spacecraft as if they’re made out of fine china, fairly routine for most modern satellites.

By using krypton instead of xenon, SpaceX can cut the cost of fueling its electric Starlink thrusters by a factor of 5-10, potentially saving ~$50,000 or more per satellite. By building four large phased-array antennas directly into the body of each satellite, the potential failure of antenna actuators and precision pointing mechanisms can be entirely removed as a possibility. In general, SpaceX has taken almost every single industry-standard process and flipped them entirely on their heads, systematically ignoring many unwritten rules (or written, for that matter) and forging their own unique style of satellite development.

By forgoing a great many proven methods and rules of satellite design and production, failure is certainly a possibility. However, the potential benefits of success are vast. Only time will tell which direction SpaceX’s radical Starlink satellite design ends up going.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla rolls out new Supercharging safety feature in the U.S.

Published

on

tesla's nacs charging connector
Credit: Tesla

Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.

It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.

The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.

With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:

“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”

The feature was first spotted by Not a Tesla App.

This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.

For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.

Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.

This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.

Continue Reading

News

LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Published

on

Credit: Tesla Optimus/X

A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Humanoid robot battery deals

LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.

China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.

LF Energy Solution vs rivals

According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.

LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.

Continue Reading

News

Tesla receives approval for FSD Supervised tests in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden in a press release.

Published

on

Credit: Grok Imagine

Tesla has received regulatory approval to begin tests of its Full Self-Driving Supervised system on public roads in Sweden, a notable step in the company’s efforts to secure FSD approval for the wider European market. 

FSD Supervised testing in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden following cooperation with national authorities and local municipalities. The approval covers the Swedish Transport Administration’s entire road network, as well as urban and highways in the Municipality of Nacka.

Tesla shared some insights into its recent FSD approvals in a press release. “The approval shows that cooperation between authorities, municipalities and businesses enables technological leaps and Nacka Municipality is the first to become part of the transport system of the future. The fact that the driving of the future is also being tested on Swedish roads is an important step in the development towards autonomy in real everyday traffic,” the company noted. 

With approval secured for FSD tests, Tesla can now evaluate the system’s performance in diverse environments, including dense urban areas and high-speed roadways across Sweden, as noted in a report from Allt Om Elbil. Tesla highlighted that the continued development of advanced driver assistance systems is expected to pave the way for improved traffic safety, increased accessibility, and lower emissions, particularly in populated city centers.

Tesla FSD Supervised Europe rollout

FSD Supervised is already available to drivers in several global markets, including Australia, Canada, China, Mexico, New Zealand, and the United States. The system is capable of handling city and highway driving tasks such as steering, acceleration, braking, and lane changes, though it still requires drivers to supervise the vehicle’s operations.

Tesla has stated that FSD Supervised has accumulated extensive driving data from its existing markets. In Europe, however, deployment remains subject to regulatory approval, with Tesla currently awaiting clearance from relevant authorities.

The company reiterated that it expects to start rolling out FSD Supervised to European customers in early 2026, pending approvals. It would then be unsurprising if the company secures approvals for FSD tests in other European territories in the coming months. 

Continue Reading