Connect with us

News

SpaceX, NASA celebrate Blue Origin’s lunar lander lawsuit loss and get back to work

Published

on

In a November 9th press conference, NASA leaders have begun to publicly celebrate the end of seven months of Blue Origin litigation and disruption to its Human Landing System (HLS). A federal court’s dismissal of that lawsuit means that the space agency can finally get back to work with SpaceX on its Starship Moon lander.

Following the failure of that lawsuit, NASA administrator Bill Nelson says that it will take the space agency some time to fully determine what and how much damage Blue Origin has caused. In the briefing, Nelson and associate administrators Kathy Lueders and Jim Free confirmed that Dynetics’ protest and Blue Origin’s protest and lawsuit have delayed SpaceX’s first crewed Starship Moon landing to no earlier than (NET) 2025.

Painfully, though, the briefing primarily focused on NASA’s Space Launch System (SLS) rocket and Orion spacecraft and the latest news about the system and the space agency’s attitude towards it are not encouraging.

Namely, exemplifying just how broken and deceptive NASA’s cost “transparency” is when it comes to SLS and Orion, the space agency used the briefing to announce its first updated Orion cost projections in more than half a decade. All the way back in September 2015, NASA announced major Orion delays and revealed that it had already spent $4.7B on the spacecraft and was committing another $6.7B through its first crewed launch – then scheduled no earlier than 2023.

That’s likely where NASA is getting its magically diminished Orion cost estimate. In reality, including Bush-era Constellation Program development that began in 2006, Orion will have cost NASA and the US taxpayer almost $22 billion by the end of 2021 and before a single full-up launch. Effectively doing the bare minimum to acknowledge a sanitized version of reality, NASA now says that Orion will cost at least $9.3 billion to its first crewed launch, which has been delayed to NET May 2024. It’s entirely unclear how NASA is calculating that deflated figure but in the six years since the space agency’s 2015 announcement that it would spend another $6.7B before Orion’s first crewed launch, it’s actually spent at least $8.4B and will have blown past the latest $9.3B target by mid-2022. Barring drastic funding cuts, Orion development will actually cost the US about $12.6B from 2016 to Artemis II and ~$25.8B since 2006 (not including inflation).

Advertisement
-->

In an even starker demonstration of cognitive dissonance, when a New York Times reporter asked a hard question about the possibility of sidestepping Orion and SLS to get astronauts onto SpaceX’s Starship lunar lander, Administrator Nelson – having just repeatedly discussed Starship – fell back on an old boilerplate statement that “there’s only one rocket capable of doing this” – “this” being launching humans to the Moon and returning them to Earth and that “one rocket” being SLS. Association admin Jim Free also exhibited similar confusion, stating that “the architecture…just wouldn’t work.”

In reality, as currently contracted with NASA, SpaceX’s Starship Moon lander is a highly capable crewed spacecraft that will be refueled in Earth orbit before propelling itself to lunar orbit, where an SLS-launched Orion spacecraft would join it and transfer over three astronauts. Starship would then use its own propulsion to change orbits, land on the Moon, and eventually boost back into lunar orbit to transfer that crew back to Orion for the return to Earth. Nothing short of sheer ignorance – willful or not – could prevent competent spaceflight engineers or managers from understanding the possibilities such an architecture raises.

If NASA is already committed to human-rating Starship’s propulsion systems, which it is, it doesn’t take a grand leap of imagination to consider the possibility of adding a few more burns to Starship’s extremely complex concept of operations. If, for example, Starship has enough performance to return to Earth orbit from the lunar surface, it’s not hard to imagine NASA’s Artemis astronauts boarding Starship in Earth orbit after a far cheaper commercial launch and then returning to Earth orbit to debark Starship and return to that crew-rated reentry vehicle. As it turns out, NASA already has a highly successful crew-rated commercial rocket and spacecraft that’s already operational and likely more than 10 times cheaper than SLS/Orion.

NASA’s first SLS core stage arrived in Florida almost seven months ago and is still at least 3-6 months away from launch. (Richard Angle)

While there are obvious challenges and uncertainties with such an option, the point is more that failing to even acknowledge the possibility of alternatives is a brutal appraisal of several of NASA’s most senior leaders and confirms that the politics of a jobs program like SLS/Orion is actively disrupting their ability to engage with reality and properly manage complex, risky programs.

Ultimately, it’s great news that SpaceX and NASA can finally get back to work on their Starship Moon lander plans. However, it’s also clearer than ever that SLS and Orion will remain a noose precariously balanced around the agency’s neck, forever threatening the Artemis Program and stifling NASA’s ability to seriously plan for – let alone publicly entertain or even acknowledge – contingencies or fresh ideas.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla says its Texas lithium refinery is now operational and unlike anything in North America

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

Published

on

Credit: Tesla/YouTube

Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.

Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.

A first-of-its-kind lithium refining process

In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.

According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.

Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted. 

Advertisement
-->

Musk calls the facility the largest lithium refinery in America

The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational. 

Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”

By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.

Continue Reading

News

Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening

Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot

Published

on

Credit: Tesla/YouTube

Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.

Calacanis’ comments were shared publicly on X, and they were quite noteworthy.

The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.

“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,”  he noted.

The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.

Advertisement
-->

“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said. 

While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.

Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.

Continue Reading

News

Tesla taps Samsung for 5G modems amid plans of Robotaxi ramp: report

The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and robotaxi operations.

Published

on

Credit: Samsung Electronics

A report from South Korea has suggested that Samsung Electronics is set to begin supplying 5G automotive modems to Tesla. If accurate, this would mark a major expansion of the two companies’ partnership beyond AI chips and into vehicle connectivity. 

The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and Robotaxi operations.

Samsung’s 5G modem

As per industry sources cited by TheElec, Samsung’s System LSI division has completed development of a dedicated automotive-grade 5G modem for Tesla. The 5G modem is reportedly in its testing phase. Initial supply is expected to begin in the first half of this year, with the first deployments planned for Tesla’s Robotaxi fleet in Texas. A wider rollout to consumer vehicles is expected to follow.

Development of the modem began in early 2024 and it required a separate engineering process from Samsung’s smartphone modems. Automotive modems must meet stricter durability standards, including resistance to extreme temperatures and vibration, along with reliability over a service life exceeding 10 years. Samsung will handle chip design internally, while a partner company would reportedly manage module integration.

The deal represents the first time Samsung has supplied Tesla with a 5G vehicle modem. Tesla has historically relied on Qualcomm for automotive connectivity, but the new agreement suggests that the electric vehicle maker may be putting in some serious effort into diversifying its suppliers as connectivity becomes more critical to autonomous driving.

Advertisement
-->

Deepening Tesla–Samsung ties

The modem supply builds on a rapidly expanding relationship between the two companies. Tesla previously selected Samsung’s foundry business to manufacture its next-generation AI6 chips, a deal valued at more than 22.7 trillion won and announced in mid-2025. Together, the AI chip and 5G modem agreements position Samsung as a key semiconductor partner for Tesla’s future vehicle platforms.

Industry observers have stated that the collaboration aligns with Tesla’s broader effort to reduce reliance on Chinese and Taiwanese suppliers. Geopolitical risk and long-term supply stability are believed to be driving the shift in no small part, particularly as Tesla prepares for large-scale Robotaxi deployment.

Stable, high-speed connectivity is essential for Tesla’s Full Self-Driving system, supporting real-time mapping, fleet management, and continuous software updates. By pairing in-vehicle AI computing with a new 5G modem supplier, Tesla appears to be tightening control over both its hardware stack and its global supply chain.

Continue Reading