Connect with us

News

NASA contracts SpaceX for a second crewed Starship Moon landing

Published

on

NASA says it exercised a contract option to purchase a second crewed Starship Moon landing from SpaceX.

Aside from its general existence, though, very little else is known about the new contract. NASA has yet to discuss when it will launch or which Artemis mission it will be attached to. A step further, it’s not actually clear why two crewed “demonstrations” are needed or what the difference between those two missions is. But more importantly, a broader Artemis Program manifest overview published days later revealed that NASA has plans for a truly unusual gap in crewed Moon landings in the mid-2020s.

Mere days after the announcement, an official NASA schedule showing the agency’s plans for the Moon and Mars over the next ten years explicitly contradicted it, showing only two Starship HLS demonstrations: one uncrewed and one crewed. Assuming that was simply a matter of poor coordination, the graphic reveals another bizarre reality: NASA appears to be explicitly planning for a three-year gap between SpaceX’s first crewed Starship landing in 2025 and the next crewed Moon landing, which the graphic suggested might occur in 2028.

Every single crewed Apollo Program mission to the Moon – including one aborted circumlunar mission, two missions to lunar orbit, and six successful landings – happened in less than four years. As published, NASA’s current Artemis plan would be akin to completing Apollo 11 – the first crewed Moon landing – in 1969 and then sitting around and waiting until 1972 for the next landing attempt. It’s difficult to properly convey just how bizarre such a huge gap would be.

There are only two obvious possible explanations. First, NASA might prefer a multi-year delay between crewed Moon landings to building and launching another SLS Block 1 rocket, in which case the three-year landing gap is explicitly the fault of years of SLS Block 1B delays – specifically NASA and Boeing’s work on the rocket’s larger Exploration Upper Stage (EUS). Second, it could be the case that NASA and/or SpaceX expects Starship’s first crewed landing to be delayed by one or several years. In 2018, SLS Block 1B was expected to debut as early as 2024. In 2022, NASA now says Block 1B will debut no earlier than 2027, while the last Block 1 launch is NET 2025.

Advertisement
-->
All planned SLS variants. (NASA)

The first explanation is arguably much likelier given that structuring schedules based on the assumption of delays would make very little logistical sense. If SpaceX were to be ready on or close to the original schedule, that would leave NASA’s Moon landing program sitting on its hands for a third of a decade. In an alternative scenario, if NASA was planning to take full advantage of every year it has and SpaceX’s Starship demonstration was still delayed, the space agency would simply end up with more SLS and Orion hardware on hand than it planned for – only a problem if the rocket is literally incapable of launching more than once every year or two. There are few conceivable scenarios where having a mission waiting on a rocket would be preferable to having a rocket waiting for a mission

In other words, NASA probably doesn’t want to plan for a three-year gap between crewed Moon landings. Rather, the anchor NASA has chained the Artemis Program to – SLS and Orion – is likely giving it no choice in the matter. Worse, if SLS Block 1B and EUS development are as poorly managed as SLS Block 1, it’s possible – if not likely – that Artemis IV and V will slip another year or two. As a result, even in the likely scenario that SpaceX’s crewed HLS demonstration runs into a year or so of delays, there could still be a three or even four-year gap between crewed NASA Moon landings right when the program should be getting up to speed.

SpaceX, meanwhile, is privately developing Starship with the ultimate intent of landing humans on Mars. Without NASA’s interest and support, the Moon is a distraction from SpaceX’s real goals. Additionally, through NASA’s Human Landing System (HLS) program, SpaceX will be providing Starship as a service, meaning that the company will retain full rights to and ownership of any system that results. Put simply, there’s a real possibility that NASA’s seemingly extraordinary lack of motivation will create a scenario in which SpaceX could outgrow the space agency’s usefulness in the mid-2020s.

NASA rolled out its first SLS Block 1 rocket on March 18th, 2022 – more than 5 years behind schedule after more than 12 years of work. (Richard Angle)

If, for example, SpaceX privately human-rates Starship for launches and entry, descent, and landing; it could use the Starship HLS lander it’s developed with NASA to land its own astronauts on the Moon without the need for SLS, Orion, or NASA. Given that the full extent of NASA’s Artemis Program ambitions appears to be one Moon landing per year, there would be plenty of room for SpaceX to perform multiple additional landings independent of NASA while the space agency’s contractors struggle to build and launch a single SLS rocket in the same time-frame.

Given the political power behind the SLS/Orion programs, it’s not clear if NASA will ever be willing or able to publicly support or take advantage of that logical and likely inevitable maturation of SpaceX’s Starship HLS capabilities. A crewed Moon mission – and especially a crewed Starship landing – successfully completed without the need for SLS or Orion could put NASA’s unsustainable rocket and spacecraft in a very uncomfortable position. Already, the HLS program has relegated SLS/Orion to the role of an Earth-Moon taxi service that just so happens to cost more than $4 billion per launch.

Above all else, uncertainty continues to reign over NASA’s longer-term human spaceflight plans – helped in no small part by the space agency’s lack of any obvious overarching strategy. NASA officials may religiously repeat phrases about how the Artemis Program aims to “sustainably” return humans to the Moon and pave the way to landing astronauts on Mars, but that doesn’t change the fact that the agency’s tangible, funded plans show virtually no evidence of serious preparations for either goal. Only time will tell where that rudderless ship ends up.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla hints toward Premium Robotaxi offering with Model S testing

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading