Connect with us

News

SpaceX, NASA targeting separate Moon launches days apart

Published

on

NASA and a SpaceX customer have announced plans to launch two unrelated Moon missions days apart next month.

On October 12th, NASA confirmed that it will roll its Space Launch System (SLS) rocket out to its Kennedy Space Center LC-39A pad for the fourth time as early as November 4th. Barring surprises, the rocket’s next launch attempt is scheduled no earlier than (NET) 12:07 am EDT (17:07 UTC), November 14th. SLS is tasked with launching an uncrewed prototype of NASA’s Orion crew capsule on its way to the Moon, where the spacecraft will attempt to enter lunar orbit and conduct tests before returning to Earth.

The same day, Japanese startup ispace confirmed that HAKUTO-R M1, its first commercial Moon lander, is scheduled to launch on a SpaceX Falcon 9 rocket sometime between November 9th and 15th. While NASA has a $73M contract with ispace to develop a second-generation SERIES-2 Moon lander in the United States, the first-generation HAKUTO-R program has been an almost entirely private endeavor. The first M1 lander will attempt to deliver two rovers – one built by Japan and the other by the United Arab Emirates – and several other commercial and government payloads to the surface of the Moon.

ispace’s first HAKUTO-R Moon lander. (ispace)
NASA’s first SLS Moon rocket. (Richard Angle)

As of 2020, HAKUTO-R is expected to weigh around 1050 kilograms (~2300 lb) at launch and has been designed to land up to 30 kilograms (~66 lb) of usable payload on the Moon. ispace has designed and built most of the lander’s structures but contracted with Europe’s ArianeGroup to provide the propulsion system and fully assemble, integrate, and test the lander in Germany.

According to ispace’s documentation [PDF], Falcon 9 will launch HAKUTO-R into a “supersynchronous” Earth orbit, where the lander will check out its systems before eventually using its own propulsion to thrust itself free of Earth’s gravity well and into the Moon’s. It expects a nominal transit from Earth orbit to the lunar surface to take at least 20 days. The lander is designed to survive up to 12 days on the Moon, during which it will attempt to operate its onboard experiments, deploy both of its tiny rovers, and transmit all the data gathered back to Earth.

An artist’s impression of HAKUTO-R on the Moon. (ispace)

The startup initially [PDF] described its arrangements with SpaceX as contracts to launch two landers as secondary payloads on two Falcon 9 rockets. In its press releases, ispace no longer specifies whether the one-ton spacecraft will be the only payload on Falcon 9. It’s possible that HAKUTO-R M1 will be a secondary payload on SpaceX’s launch of the Eutelsat 10B geostationary communications satellite, which is currently scheduled NET November 11th. In a rare move, SpaceX will reportedly expend Falcon 9’s reusable first-stage booster during the mission, leaving much more performance on the table.

Update: Launch photographer Ben Cooper reports that Falcon 9’s reusable booster will fly back to the Florida coast to land on land after launching HAKUTO-R, strongly implying that the Moon lander will actually be the rocket’s only payload.

Advertisement

ispace has raised approximately $210 million since it was founded in 2010 – coincidentally the same year that the US Congress forced NASA to begin developing the SLS rocket. 12 years later, there’s a chance that the first launches of SLS and HAKUTO-R could occur hours apart.

https://twitter.com/Eutelsat_SA/status/1541820384344956930

When it rolls out next month, NASA’s SLS rocket will be heading to the launch pad for the fourth time. SLS and Orion have had a less-than-smooth journey to their first launch, suffering half a decade of delays and running tens of billions of dollars over budget as a result. Once all the pieces had arrived in Florida, it took NASA and its contractors about 12 months to finish assembling SLS and Orion and begin testing the integrated rocket.

Since integrated testing began in April 2022, SLS has undergone five publicized wet dress rehearsal (WDR) tests in April, June, and September. It also attempted to launch twice on August 29th and September 3rd, although both attempts were arguably a continuation of WDR testing in everything but name. But it appears that when the rocket rolls out for the fourth time, NASA will have finally completed nearly all of the testing it should have finished before loudly proclaiming that its “Mega Moon Rocket” was ready to launch back in August.

The SLS launch debut will almost certainly take precedence over any other Cape Canaveral launch around the same time, including HAKUTO-R M1, but SpaceX could potentially launch the Moon lander roughly one day before or after NASA’s Moon rocket.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

News

Tesla adjusts Robotaxi safety monitor strategy in Austin with new service area

The positioning of the driver, as well as the driver’s hands being closer to the steering wheel, is more similar to what Tesla is doing in the Bay Area Robotaxi program than it is to what it has done in Austin.

Published

on

Credit: @AdanGuajardo/X

Tesla has adjusted its Robotaxi safety monitor strategy in Austin after it expanded its service area in the city last week for the third time.

Tesla has been operating its Robotaxi platform in Austin since June 22. The vehicles have been operated without a driver, but Tesla has placed safety monitors in the passenger’s seat as a precaution.

The safety monitors are responsible for performing any necessary interventions and maintaining a safe and comfortable cabin for riders as they experience Tesla’s first venture into the driverless ride-sharing space.

Last week, Tesla expanded its service area in Austin for the third time, expanding it from about 90 square miles to 170 square miles. The expansion included new territory, including the Austin-Bergstrom International Airport, Tesla’s Gigafactory Texas, and several freeways.

Tesla Robotaxi geofence expansion enters Plaid Mode and includes a surprise

The freeway is an area that is uncharted territory for the Tesla Robotaxi program, and this fact alone encouraged Tesla to switch up its safety monitor positioning for the time being.

For now, they will be riding in the driver’s seat when routes require freeway travel:

The positioning of the driver, as well as the driver’s hands being closer to the steering wheel, is more similar to what Tesla is doing in the Bay Area Robotaxi program than it is to what it has done in Austin.

This is sure to draw criticism from skeptics, but it is simply a step to keep things controlled and safe while the first Robotaxi drives take passengers on the highway with this version of the Full Self-Driving software.

This FSD version differs from the one that customers have in their own vehicles, but CEO Elon Musk has indicated something big is coming soon. FSD v14 is coming to vehicles in the near future, and Musk has said its performance is pretty incredible.

Tesla’s Elon Musk shares optimistic teaser about FSD V14: “Feels sentient”

Continue Reading

News

Tesla has best month ever in Turkey with drastic spike in sales

Tesla managed to sell 8,730 Model Y vehicles in Turkey, outpacing almost every competitor by a substantial margin. Only one brand sold better than Tesla in August in Turkey, and it was Renault.

Published

on

Credit: Tesla

Tesla had its best monthly performance ever in Turkey in August, thanks to a drastic spike in sales.

Tesla saw an 86 percent bump in sales of the new Model Y in Turkey in August compared to July, dominating the market.

The performance was one of Tesla’s best in the market, and the company’s sales for the month accounted for half of all EV sales in Turkey for August, as it dominated and led BYD, which was the second-best-selling brand with just 1,639 units sold.

Tesla managed to sell 8,730 Model Y vehicles in Turkey, outpacing almost every competitor by a substantial margin. Only one brand sold better than Tesla in August in Turkey, and it was Renault.

Electric vehicles are, in some ways, more desirable than their gas counterparts in Turkey for several reasons. Most of the reasoning is financial.

First, EVs are subject to a lower Special Consumption Tax in Turkey. EVs can range from 25 percent to up to 170 percent, but this is less than the 70 to 220 percent rate that gas-powered vehicles can face. The tax is dependent on engine size.

Elon Musk courted to build a Tesla factory in Turkey

Additionally, EVs are exempt from the annual Motor Vehicle Tax for the first ten years, providing consumers with a long-term ownership advantage. There are also credits that can amount to $30,000 in breaks, which makes them more accessible and brings down the cost of ownership.

Let’s not forget the other advantages that are felt regardless of country: cheaper fuel costs, reduced maintenance, and improved performance.

The base Model Y is the only configuration available in Turkey currently.

Continue Reading

News

Tesla is upgrading airbag safety through a crazy software update

“This upgrade builds upon your vehicle’s superior crash protection by now using Tesla Vision to help offer some of the most cutting-edge airbag performance in the event of a frontal crash.”

Published

on

(Credit: Tesla)

Tesla is upgrading airbag safety through a crazy software update, which will utilize the company’s vision-first approach to enable better protection in the event of an accident.

Over the years, Tesla has gained an incredible reputation for prioritizing safety in its vehicles, with crash test ratings at the forefront of its engineers’ minds.

This has led to Tesla gaining numerous five-star safety ratings and awards related to safety. It is not just a statistical thing, either. In the real world, we’ve seen Teslas demonstrate some impressive examples of crash safety.

Everything from that glass roof not caving in when a tree falls on it to a Model Y surviving a drive off a cliff has been recorded.

However, Tesla is always looking to improve safety, and unlike most companies, it does not need a physical hardware update to do so. It can enhance features such as crash response and airbag performance through Over-the-Air software updates, which download automatically to the vehicle.

In Tesla’s 2025.32 Software Update, the company is rolling out a Frontal Airbag System Enhancement, which aims to use Tesla Vision, the company’s camera-based approach to self-driving, to keep occupants safe.

The release notes state (via NotaTeslaApp):

“This upgrade builds upon your vehicle’s superior crash protection by now using Tesla Vision to help offer some of the most cutting-edge airbag performance in the event of a frontal crash. Building on top of regulatory and industry crash testing, this release enables front airbags to begin to inflate and restrain occupants earlier, in a way that only Tesla’s integrated systems are capable of doing, making your car safer over time.”

The use of cameras to predict a better time to restrain occupants with seatbelts and inflate airbags prior to a collision is a fantastic way to prevent injuries and limit harm done to those in the vehicle.

The feature is currently limited to the Model Y.

Continue Reading

Trending