Connect with us

News

SpaceX eyes major drone ship fleet upgrades and a new rocket recovery robot

SpaceX's 'Octagrabber' rocket recovery robot is pictured on drone ship OCISLY's deck in February 2019. (Pauline Acalin)

Published

on

SpaceX has kicked off a series of major upgrades planned for its East Coast fleet of drone ships, centered around Just Read The Instructions (JRTI) and most recently culminating in the apparent fabrication of a second tank-like rocket recovery robot.

Back in Q4 2019, West Coast drone ship JRTI officially departed the Port of Los Angeles berth it operated out of for 3+ years — traversing the Panama Canal, making a weeks-long pit-stop in a Louisiana port, and ultimately arriving at Port Canaveral on December 11th. The modified barge spent more than a month relatively untouched – as was the somewhat mysterious cargo it had brought with it from the Gulf Coast – before SpaceX began JRTI’s long-awaited upgrades around a month ago.

For almost half a year, it’s looked like that SpaceX would move its West Coast drone ship to Florida after the company’s Vandenberg Air Force Base (VAFB) pad entered a major lull in launch activities in early 2019. Aside from one launch in June 2019, SpaceX’s West Coast pad has remained unused and that isn’t expected to change anytime soon. With Cape Canaveral potential reopening its dormant polar launch corridor just weeks from now, it’s entirely possible that SpaceX will be able to perform all of its planned launches from Florida alone for at least the next 6-12 months. Targeting more than 30 East Coast launches in 2020 alone, SpaceX could also benefit from at least one additional drone ship to continue high-volume Falcon booster recoveries without ship availability becoming a major launch constraint. Thankfully, JRTI may be the perfect solution.

Informally known as ‘Octagrabber’, a reference to the robot’s primary function, SpaceX has been using the only operational instance of the vehicle on drone ship Of Course I Still Love You (OCISLY) for more than two years, beginning in 2017. While far from autonomous, Octagrabber helps SpaceX’s maritime rocket recovery team minimize the risks workers are subjected to and gives the company a bit more flexibility to attempt Falcon booster landings in less-than-pristine ocean weather.

While Falcon boosters are relatively stable once landed, thanks to the vast majority of their empty mass being concentrated around their nine Merlin 1D engines, even moderate waves can cause them to slip and slide around the drone ship deck.

Advertisement
Falcon Heavy center core B1055 successfully landed aboard drone ship OCISLY nearly 970 km (600 mi) off the coast of Florida but was lost soon after when it tipped over in high seas. (SpaceX)
Octagrabber robots are meant to prevent boosters from sliding off of drone ship decks by anchoring them with their tank-like weight. (Teslarati)

In fact, the best operational demonstration of the value of Octagrabber-style recovery robots came after SpaceX’s historic Falcon Heavy triple-booster recovery in April 2019 – the first time all three of the rocket’s first stage boosters successfully landed after liftoff. As it turns out, thanks to moderate hardware differences between Falcon Heavy center core boosters and normal Falcon 9 boosters, OCISLY’s Octagrabber robot did not have the attachment mechanisms needed to ‘grab’ the center core (B1055, in this case). In theory, this could be a non-issue but the drone ship unfortunately ran into high seas, making its deck to pitch and tilt and ultimately causing to B1055 to tip over, breaking in half and effectively destroyed the booster.

With Octagrabber robots, drone ships should almost never lose recovered boosters because of high seas (within reason). As such, it should come as no surprise at all that SpaceX is building a new recovery robot for drone ship JRTI – the newest addition to its Florida fleet.

Falcon 9 B1048 returns to Port of LA aboard drone ship JRTI after completing its launch debut in August 2018. (Pauline Acalin)

Aside from the discovery of a second Octagrabber being built at SpaceX’s former East Coast Starship factory, the nature of other upgrades planned for drone ship JRTI are more mysterious. For several months, the rocket landing platform has had almost a dozen massive generators and new thruster pods stored on its deck, seemingly waiting on an unknown impetus for their installation. In recent weeks, visible work to prepare the new hardware for installation has begun.

Notably, the thrusters and power supplies that seem destined for installation on JRTI would make for a dramatic upgrade, potentially giving the drone ship more power than the tug boats that must currently tender and tow them to landing zones. In other words, that’s a complicated way of saying that SpaceX may be trying to make drone ship JRTI almost entirely independent of contracted tugboats, potentially simplifying and lowering the cost of booster recoveries.

One day soon, SpaceX’s upgraded drone ships may be able to recover boosters and return them to shore without any human technicians. (Richard Angle)

While less likely, it’s also possible that SpaceX is finally in a position to fully realize the “autonomous” namesake of its autonomous spaceport drone ships (ASDS), with high-powered thrusters potentially giving JRTI the ability to leave port, cruise to Atlantic Ocean landing zones, deploy an Octagrabber, and return to port with a booster – all without humans in the loop. That capability is likely still on the horizon but powerful thrusters and generators would bring port-to-port drone ship autonomy within SpaceX’s grasp in the near future.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla addresses door handle complaints with simple engineering fix

“We’ll have a really good solution for that. I’m not worried about it.”

Published

on

Tesla Model S self-presenting door handle
Tesla Model S self-presenting door handle (Credit: TesBros)

Tesla is going to adjust one heavily scrutinized part of its vehicles after recent government agencies have launched probes into an issue stemming from complaints from owners.

Over the past few days, we have reported on the issues with Tesla’s door handle systems from both the Chinese and American governments.

In China, it dealt with the Model S, while the United States’ National Highway Traffic Safety Administration (NHTSA) reported nine complaints from owners experiencing issues with 2021 Model Ys, as some said they had trouble entering their car after the 12V battery was low on power.

Bloomberg, in an interview with Tesla Chief Designer Franz von Holzhausen, asked whether the company planned to adjust the door handle design to alleviate any concerns that regulatory agencies might have.

Regarding the interior latch concerns in the United States:

  • Von Holzhausen said that, while a mechanical door release resolves this problem, Tesla plans to “combine the two” to help reduce stress in what he called “panic situations.”
  • He also added that “it’s in the cars now…The idea of combining the electronic and the manual one together in one button, I think, makes a lot of sense.” Franz said the muscle memory of reaching for the same button will be advantageous for children and anyone who is in an emergency.

Regarding the exterior door handle concerns in China:

  • Von Holzhausen said Tesla is reviewing the details of the regulation and confirmed, “We’ll have a really good solution for that. I’m not worried about it.”

The new Model Y already has emergency mechanical door release latches in the back, but combining them in future vehicles seems to be an ideal solution for other vehicles in Tesla’s lineup.

It will likely help Tesla avoid complaints from owners about not having an out in the event of a power outage or accident. It is a small engineering change that could be extremely valuable for future instances.

Continue Reading

News

Elon Musk calls out viral claim of 10,000 Tesla Optimus deal: “Fake”

For now at least, Tesla seems determined to focus on the development of Optimus V3.

Published

on

Credit: Tesla Optimus/X

Elon Musk has provided some clarification to recent reports suggesting that PharmAGRI, a US pharmaceutical and agricultural infrastructure company, is looking to deploy 10,000 Optimus robots for its operations.

Musk posted his clarification on social media platform X.

Alleged Optimus purchase

Recently, reports emerged stating that PharmAGRI Capital Partners will be tapping into Tesla’s humanoid robots for its operations. The firm claimed that it had executed a Letter of Intent with Tesla to deploy up to 10,000 Optimus Gen 3+ humanoid robots across its SuperPharm and CEA facilities. This should allow the company to automate its labor and ensure diversion control.

A comment from Lynn Stockwell, Chairwoman & CEO, suggested that the company really was partnering with Tesla. “With Tesla robotics powering our facilities and DEA-licensed infrastructure in place, we can scale with precision, meet federal sourcing mandates, and deliver therapies that are compliant, secure, and American-made,” she said. 

Elon Musk clariies

News of PharmAGRI’s Optimus claims quickly spread on social media, though some Tesla watchers argued that it seemed unlikely that the EV maker will commit two legions of Optimus robots to a rather unknown company this early. Some pointed out that Tesla typically commits to high-profile customers to test its early products, such as PepsiCo with the Tesla Semi. 

Advertisement

Photos from PharmAGRI’s website depicting Tesla Optimus bots, as well as the rather basic look of the website itself, also brought more reservations to the company’s claims. Ultimately, Elon Musk weighed in on the matter, responding to a post about PharmAGRI’s Optimus-filled webpage. Musk was quick and direct, simply stating, “Fake.”

Elon Musk’s comments were quite unsurprising considering that Optimus is still very much in active development, and thus, it is quite unlikely that the company is already taking orders or even Letters of Intent from potential customers at this time. For now at least, Tesla seems determined to focus on the development of Optimus V3, which Musk has noted will be “sublime.”

Continue Reading

Elon Musk

Elon Musk: Self-sustaining city on Mars is plausible in 25-30 years

Musk noted that true self-sufficiency requires Mars to develop “all the ingredients of civilization.”

Published

on

Credit: Elon Musk/X

Elon Musk has stated that a self-sustaining human settlement on Mars could be established in 25-30 years, provided launch capacity increases dramatically in the coming decades. 

Speaking at the All-In Summit, the SpaceX CEO said building a self-sufficient colony depends on exponential growth in “tonnage to Mars” with each launch window, highlighting Starship’s role as the company’s pathway to interplanetary initiatives.

Mars settlement goals

Musk noted that true self-sufficiency requires Mars to develop “all the ingredients of civilization,” from food production to microchip manufacturing. Starship Version 3 is expected to support the first uncrewed Mars test flights, while future iterations could reach 466 feet in height and deliver larger payloads critical for settlement. Ultimately, Musk stated that an aggressive timeline for a city on Mars could be as short as 30 years, as noted in a Space.com report.

“I think it can be done in 30 years, provided there’s an exponential increase in the tonnage to Mars with each successive Mars transfer window, which is every two years. Every two years, the planets align and you can transfer to Mars. 

“I think in roughly 15, but maybe as few as 10, but 10-15-ish Mars transfer windows. If you’re seeing exponential increases in the tonnage to Mars with each Mars transfer window, then it should be possible to make Mars self-sustaining in about call it roughly 25 years,” Musk said. 

Advertisement

Starship’s role

Starship has flown in a fully stacked configuration ten times, most recently in August when it completed its first payload deployment in orbit. The next flight will close out the Version 2 program before transitioning to Starship Version 3, featuring Raptor 3 engines and a redesigned structure capable of lifting over 100 tons to orbit.

While SpaceX has demonstrated Super Heavy booster reuse, Ship reusability remains in development. Musk noted that the heat shield is still the biggest technical hurdle, as no orbital vehicle has yet achieved rapid, full reuse.

“For full reusability of the Ship, there’s still a lot of work that remains on the heat shield. No one’s ever made a fully reusable orbital heat shield. The shuttle heat shield had to go through nine months of repair after every flight,” he said. 

Continue Reading

Trending