Connect with us
SpaceX completed its first Starlink launch on May 23rd, flying B1049 for the third time. SpaceX's next Starlink launch will very likely mark the first time a booster has flown four orbital-class missions. (SpaceX) SpaceX completed its first Starlink launch on May 23rd, flying B1049 for the third time. SpaceX's next Starlink launch will very likely mark the first time a booster has flown four orbital-class missions. (SpaceX)

News

SpaceX’s next Falcon 9 missions likely two back-to-back Starlink satellite launches

SpaceX expects no fewer than 1-5 additional Starlink launches before the end of 2019 and two of those missions already have launch dates this year, according to NASASpaceflight.com. (SpaceX)

Published

on

Hinted at by a launch photographer and confirmed by an article published on NASASpaceflight.com, it appears that SpaceX’s next Falcon 9 launch is at least a month away and will likely be the company’s first operational Starlink mission, deemed “Starlink 1”.

Barring a surprise mission in the interim, this means that SpaceX is going to have a gap of at least two months between customer launches, something the company has not experienced since mid-2015 – more than four years ago. As such, it’s an extremely happy coincidence that SpaceX may now have internal Starlink launches to fill lulls in its commercial launch manifest.

Like any production and services-focused company, SpaceX incurs operational costs whether or not its services are being used – employees, leases, supplier contracts, and more still need to be paid for, facilities still need upkeep, long-lead production can’t simply pause, and many other recurring costs can’t be avoided. In theory, supplementing commercial launches with internal launches thus limits SpaceX’s downtime and effectively increases overall capital efficiency.

Factories never sleep. (SpaceX)

Flatsat revolution

Enter Starlink, a colossal ~11,800-satellite broadband internet constellation nominally designed, manufactured, launched, and operated by SpaceX. On May 23rd, after approximately one week of delays, a twice-flown Falcon 9 booster lifted off for the third time in support of SpaceX’s first dedicated Starlink launch, an unparalleled 60-satellite beta test known internally as “Starlink v0.9”.

Upsetting all expectations, SpaceX managed to fit en incredible 60 high-performance Starlink satellites into Falcon 9’s unchanged payload fairing – middle of the ground in terms of usable volume. Weighing anywhere from 16,000 kg to 18,500 kg (35,300-40,800 lb), SpaceX’s very first dedicated Starlink launch also crushed the company’s record for heaviest payload launched by several metric tons.

In a fascinating turn of events, SpaceX ultimately sided with a largely unprecedented form factor for its operational Starlink satellites, resulting in ultra-thin, rectangular spacecraft that can be stacked like cards and feature their own integrated locking and stacking mechanisms.

The deployment mechanism was simply bizarre – all 60 satellites were released in one giant blob and are designed to tolerate bumps as they spread out. (SpaceX)
A general overview of Starlink’s bus, payload stacking, and solar arrays. (SpaceX)

A paradigm shift

According to NASASpaceflight.com, SpaceX’s first and second operational Starlink missions (Starlink 1 and 2) are scheduled to launch no earlier than (NET) October 17th and November 4th, while a similarly trustworthy source puts Starlink 1’s launch date NET “late October”.

Given that Starlink v0.9 was effectively a massive flight test meant to tease out issues with the satellites’ designs, any new any satellites launched in the coming months will have almost certainly been manufactured, assembled, and prepared for flight in just a few months. Unfortunately, out of the 60 satellites launched in May 2019, 10 (16.5%) have been decommissioned for unknown reasons, although the remaining 50 (83.5%) have reached their final orbits and are believed to be in good health.

Put simply, a >15% failure rate is not acceptable for an operational constellation of thousands of satellites, meaning that SpaceX will likely continue to refine and improve its Starlink design before truly ramping up production and launch cadence. Unless the issues leading to multiple satellite failures were relatively simple or expected, the company’s next one (or two) Starlink launches could be closer to “v0.95” than the first fully operational missions. Time will tell.

For now, the fact alone that SpaceX reportedly plans to complete its 180th high-performance satellites barely nine months after beginning high-volume production is dumbfounding. Incredibly, building 180 satellites in 9 months is, by all means, a low-volume run relative to what SpaceX will need to achieve to launch its full Starlink constellation by late 2027. A production rate of 180 Starlink satellites per month is much closer to the necessary production and launch cadences needed for SpaceX’s deployment milestones.

Advertisement
Starlink.com

Regardless, for the time being, it appears that odds are good that SpaceX will be able to make good on its promise of launching 2-6 Starlink missions in 2019. According to SpaceX, Starlink can begin offering serious commercial broadband services in regions of the northern US and southern Canada once 360 satellites are safely in orbit.

If SpaceX manages to launch two quasi-operational Starlink missions in the span of a month (Oct-Nov), that initial operations milestone could come just a few months into 2020.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk’s xAI Secures $3B Investment From Saudi AI Firm HUMAIN

The transaction converts HUMAIN’s xAI stake into SpaceX shares, positioning the Saudi-backed firm as a significant minority shareholder in the newly combined entity.

Published

on

Credit: xAI

Saudi artificial intelligence firm HUMAIN has confirmed a $3 billion Series E investment in xAI just weeks before the startup’s merger with SpaceX.

The transaction converts HUMAIN’s xAI stake into SpaceX shares, positioning the Saudi-backed firm as a significant minority shareholder in the newly combined entity.

The investment gives HUMAIN exposure to what has been described as one of the largest technology mergers on record, combining xAI’s artificial intelligence capabilities with SpaceX’s scale, infrastructure, and engineering base, as noted in a press release.

“This investment reflects HUMAIN’s conviction in transformational AI and our ability to deploy meaningful capital behind exceptional opportunities where long-term vision, technical excellence, and execution converge, xAI’s trajectory, further strengthened by its acquisition by SpaceX, one of the largest technology mergers on record, represents the kind of high-impact platform we seek to support with significant capital” HUMAIN CEO Tareq Amin stated.

Advertisement

The investment also positions HUMAIN for potential long-term equity upside should SpaceX proceed with a public offering.

The investment expands on an existing partnership announced in November 2025 at the U.S.-Saudi Investment Forum. Under that agreement, HUMAIN and xAI committed to jointly develop more than 500 megawatts of next-generation AI data center and compute infrastructure in Saudi Arabia.

The collaboration also includes deployment of xAI’s Grok models within the kingdom, aligning with Saudi Arabia’s broader strategy to build domestic AI capacity and attract global technology players.

HUMAIN, backed by the Public Investment Fund, is positioning itself as a full-stack AI player spanning advanced data centers, cloud infrastructure, AI models, and applied solutions. The Series E investment deepens its role from development partner to major shareholder in the Musk-led AI and space platform.

Advertisement
Continue Reading

News

Tesla Giga Berlin plant manager faces defamation probe after IG Metall union complaint

Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig.

Published

on

Credit: @Gf4Tesla/X

Tesla’s Giga Berlin plant manager is now under investigation after a complaint from trade union IG Metall, escalating tensions ahead of next month’s works council elections. 

Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig, as per a report from rbb24.

A spokesperson for the Frankfurt (Oder) public prosecutor’s office confirmed to the German Press Agency that an investigation for defamation has been initiated following a criminal complaint filed by IG Metall against Thierig.

The dispute stems from Tesla’s allegation that an IG Metall representative secretly recorded a works council meeting using a laptop. In a post on X, Thierig described the incident as “truly beyond words,” stating that police were called and a criminal complaint was filed.

Advertisement

“What has happened today at Giga Berlin is truly beyond words! An external union representative from IG Metall attended a works council meeting. For unknown reasons, he recorded the internal meeting and was caught in action! We obviously called police and filed a criminal complaint!” Thierig wrote in a post on X.

Police later confirmed that officers did seize a computer belonging to an IG Metall member at Giga Berlin. Prosecutors are separately investigating the union representative on suspicion of breach of confidentiality and violation of Germany’s Works Constitution Act.

IG Metall has denied Tesla’s allegations. The union claimed that its member offered to unlock the laptop for review in order to accelerate the investigation and counter what it called false accusations. The union has also sought a labor court injunction to “prohibit Thierig from further disseminating false claims.”

The clash comes as Tesla employees prepare to vote in works council elections scheduled for March 2–4, 2026. Approximately 11,000 Giga Berlin workers are eligible to participate in the elections.

Advertisement
Continue Reading

News

Tesla wins FCC approval for wireless Cybercab charging system

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.

Published

on

Credit: Tesla AI/X

Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system. 

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.

Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”

The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”

Advertisement

Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”

Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”

As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.

While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.

Advertisement

Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.

DA-26-168A1 by Simon Alvarez

Advertisement
Continue Reading