Connect with us
Falcon Heavy STP-2. Falcon Heavy STP-2.

News

SpaceX’s next Falcon Heavy launch on track to carry multiple military satellites

According to the spacecraft contractor, SpaceX's next Falcon Heavy launch will carry a surprise secondary payload for the US military. (SpaceX)

Published

on

According to one of the US Space Force 44 (USSF-44) mission’s satellite providers, SpaceX’s next Falcon Heavy launch remains on track for late 2020 and will apparently be carrying more than one military satellite to orbit.

Successfully launched just 73 days apart in April and June 2019, SpaceX already has two twice-flown Falcon Heavy side boosters in storage somewhere in Cape Canaveral, Florida, raising the possibility that one or several of the rocket’s next launches could reuse those some boosters. However, NASASpaceflight.com has already confirmed that all three Falcon Heavy Flight 4 boosters will be new, likely representing 25-30%+ of all of SpaceX’s 2020 booster production output.

That also means that publicly-visible Falcon Heavy Flight 4 launch preparations will start much sooner than later as SpaceX works to ship its new boosters from its Hawthorne, California factory to McGregor, Texas for routine acceptance testing and finally to launch facilities in Florida.

Built by a Boeing subsidiary, the TETRA-1 spacecraft’s purpose is entirely unclear aside from a focus on testing “prototype missions in and around geostationary orbit (GEO).” (Millenium Space)

Based on SpaceX’s first Falcon Heavy Block 5 launch, completed on April 11th, 2019, the next rocket’s three new boosters should begin arriving in Florida by mid-2020 – perhaps just a month or two from now. Prior to Arabsat 6A’s commercial Falcon Heavy launch debut, the first of the rocket’s boosters completed acceptance testing in McGregor, Texas and arrived at Kennedy Space Center (KSC) around mid-December 2018 – a bit less than four months before liftoff.

Per NASASpaceflight’s confirmation that all-new boosters are assigned to USSF-44, it’s also true that the mission will mark the second time SpaceX has completed serial production and delivery of a complete Falcon Heavy rocket. With that first-time pathfinder run already behind SpaceX thanks to its April 2019 Arabsat 6A launch, it’s likely that manufacturing and acceptance testing will be much more streamlined, while also reducing the amount of time it will take the rocket to go from Florida arrival to lift-off.

Advertisement
Falcon Heavy booster B1052, B1053, and B1055 took about two months to arrive in Florida and another two months to roll out to the launch pad. (Pauline Acalin)

USSF-44 is on track to become SpaceX’s first operational Falcon Heavy launch for the US government some 15-18 months after the company successfully completed STP-2 – a certification test flight for the US Air Force – in June 2019. While some work reportedly remains before SpaceX’s super heavy-lift rocket can be considered fully certified for high-value US military launches, Millenium Space’s April 21st update states that Falcon Heavy’s USSF-44 mission is still on track to “launch in late 2020”.

Falcon Heavy’s STP-2 payload stack is pictured here in June 2019 moments before encapsulation. (SpaceX)

Given that SpaceX is likely in the midst of Falcon Heavy Flight 4 booster production and could begin delivering hardware to Florida just 2-3 months from now, Millenium Space’s comment strongly implies that launch preparations are proceeding smoothly. If SpaceX still needs to complete one or several certification milestones, both it and the US military clearly have a firm plan and are confident that Falcon Heavy can be certified by Q4 2020.

SpaceX also appears to be supporting the US military’s relatively frequent addition of small secondary satellites – often prototypes meant to test new technologies or strategies – on large launches. Whether SpaceX will add secondary dispensers to the rocket’s upper stage or the ~3.7 metric ton (~8200 lb) USSF-44 satellite deploys them itself remains to be seen, but the mission will carry at least one other passenger (TETRA-1). If past US military launches are anything to go by, at least one or two other smaller satellites may also hitch a ride on Falcon Heavy later this year.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Published

on

Credit: @AdanGuajardo/X

Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater. 

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Two-seat Cybercabs make perfect sense

During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab. 

“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said. 

Advertisement

Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.

“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said. 

Tesla’s robotaxi lineup is already here

The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.

The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.

Advertisement

Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.

Continue Reading

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading