News
(Updated) SpaceX’s next launch is a first step to rival Comcast and Time Warner
Updated February 21: Due to strong upper-level winds, SpaceX has postponed the launch to the same time on Thursday, 6:17 a.m. PST, 9:17 EST. CEO Elon Musk took to Twitter to address the delay, “High altitude wind shear data shows a probable 2% load exceedance. Small, but better to be paranoid.”
Update: SpaceX has delayed the launch of PAZ and its Starlink prototype satellites from Sunday, February 18 to Wednesday the 21st in order to complete additional tests and checks of an upgraded payload fairing. Wednesday’s new instantaneous launch window remains unchanged – 6:17 a.m. PST, 9:17 EST.
Standing down today due to strong upper level winds. Now targeting launch of PAZ for February 22 at 6:17 a.m. PST from Vandenberg Air Force Base.
— SpaceX (@SpaceX) February 21, 2018
Not long after SpaceX’s recent, flawless Falcon Heavy debut, the company has completed a successful static fire of a flight-proven Falcon 9 on the West coast. SpaceX is preparing to send the Spanish government’s PAZ imaging satellite skyward aboard the same rocket that launched Formosat-5 for the Taiwanese government in August 2017.
Amazingly, this means that three of the four launches conducted by SpaceX in the last two months will have made use of reused Falcon 9 boosters, something I am choosing to take as foreshadowing for the coming months. By all appearances, the rocket company has been eminently successful in enacting a true industrial phase change towards the acceptance of flight-proven rocketry – a hard-earned achievement made possible by a combination of incredible reliability and unexpectedly positive responses from government agencies like NASA and the USAF.
- SpaceX is readying one of three flightworthy reused boosters for its final flight, NET June 4. (SpaceX)
- GovSat-1’s sooty booster from late January 2018. (Tom Cross)
- Falcon Heavy’s incredible debut also featured two flight-proven boosters – the side cores were converted from reused Falcon 9s. (Bill Carton)
A relatively light payload, PAZ weighs in just shy of 1400 kg. However, despite a lack of confirmation, it is known that riding along with the imaging satellite are two highly significant prototype satellites, built by SpaceX itself. Deemed Microsat 2A and 2B in FCC licensing applications, the small 400 kg satellites will act as SpaceX’s first-ever flight test of integrated satellite hardware – a massive step towards realizing the company’s dream of Starlink, a global internet constellation meant to provide service of the same caliber (or better…) as providers like Comcast, Time Warner, and others. This will be a major moment if successful, and will make SpaceX the first US company to successfully launch its first prototype internet satellites intended for low Earth orbit (200-1000 miles above Earth), a factor that would make them far more viable as a competitive alternative to ground-based internet than the current heavyweights in geostationary orbit (30,000+ miles above Earth).
Those distances are crucial: such a long distance between user and terminal (60,000+ miles round trip) results in what the average person would consider “lag” or simply unresponsive internet, where actions take as long as several seconds to register (such as clicking a link). This makes things like gaming, video chat, and more effectively unusable. However, thanks to the miniaturization enabled by the relentless progress of electronics technologies, tiny satellites (100-500 kg) with electric propulsion are rapidly becoming a viable alternative and threat to the massive (4000-8000 kg) communications satellites placed into geostationary orbit. Through mass production and lower costs to orbit, a giant network of magnitudes smaller satellites can realistically beat those giant satellites by being closer to the Earth. This means that more satellites in a given network will more frequently reenter the Earth’s atmosphere and be destroyed, requiring the constant launch of reinforcements, but this new paradigm is actually a viable strategy.

A beautiful string of Iridium NEXT satellites deployed into the sunrise. (SpaceX)
SpaceX’s own Microsats, prototypes for a constellation likely to be named Starlink, are quite possibly the most promising entrants among a sea of interested constellation operators. With the addition of laser-based communications links between each or most of the Starlink satellites planned to be placed in orbit, SpaceX’s constellation will be truly unique in its extreme flexibility as a giant, global mesh network.
By using lasers, latency (lag) will be far less significant and will enable SpaceX to distribute its network’s availability beyond the capability of any individual satellite, known as a decentralized network. As always, SpaceX’s choice to pursue such a configuration is extraordinarily ambitious. Still, the very fact that Microsat 2A and 2B are scheduled for launch just days from now suggests that the company’s near-silent satellite development program, employing several hundred people all over the West coast, has seen some considerable successes. In other words, it’s likely not a coincidence that the first flight test of a Starlink satellite will actually feature two satellites – one cannot test laser interlinks with just one satellite.
All things considered, fingers crossed for SpaceX on this flight-proven commercial mission. If all goes well with both PAZ and the Starlink prototypes, SpaceX will be one huge step closer to being able to provide truly universal, affordable, and high-quality internet.
Stay with us on Twitter and Instagram as Teslarati’s West Coast photojournalist, Pauline Acalin, will bring us on the ground coverage at California’s Vandenberg Air Force Base ahead of, and on the day of, the PAZ mission.
Follow along live as we cover these exciting proceedings live on social media!
Teslarati – Instagram – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
Elon Musk
SpaceX’s Starship program is already bouncing back from Booster 18 fiasco
Just over a week since Booster 18 met its untimely end, SpaceX is now busy stacking Booster 19, and at a very rapid pace, too.
SpaceX is already bouncing back from the fiasco that it experienced during Starship Booster 18’s initial tests earlier this month.
Just over a week since Booster 18 met its untimely end, SpaceX is now busy stacking Booster 19, and at a very rapid pace, too.
Starship V3 Booster 19 is rising
As per Starbase watchers on X, SpaceX rolled out the fourth aft section of Booster 19 to Starbase’s MegaBay this weekend, stacking it to reach 15 rings tall with just a few sections remaining. This marks the fastest booster assembly to date at four sections in five days. This is quite impressive, and it bodes well for SpaceX’s Starship V3 program, which is expected to be a notable step up from the V2 program, which was retired after a flawless Flight 11.
Starship watcher TankWatchers noted the tempo on X, stating, “During the night the A4 section of Booster 19 rolled out to the MegaBay. With 4 sections in just 5 days, this is shaping up to be the fastest booster stack ever.” Fellow Starbase watcher TestFlight echoed the same sentiments. “Booster 19 is now 15 rings tall, with 3 aft sections remaining!” the space enthusiast wrote.
Aggressive targets despite Booster 18 fiasco
SpaceX’s V3 program encountered a speed bump earlier this month when Booster 18, just one day after rolling out into the factory, experienced a major anomaly during gas system pressure testing at SpaceX’s Massey facility in Starbase, Texas. While no propellant was loaded, no engines were installed, and no one was injured in the incident, the unexpected end of Booster 18 sparked speculation that the Starship V3 program could face delays.
Despite the Booster 18 fiasco, however, SpaceX announced that “Starship’s twelfth flight test remains targeted for the first quarter of 2026.” Elon Musk shared a similar timeline on X earlier this year, with the CEO stating that “ V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.”
Considering that Booster 19 seems to be moving through its production phases quickly, perhaps SpaceX’s Q1 2026 target for Flight 12 might indeed be more than feasible.
News
Elon Musk makes a key Tesla Optimus detail official
“Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote on X.
Tesla CEO Elon Musk just made a key detail about Optimus official. In a post on X, the CEO clarified some key wording about Optimus, which should help the media and the public become more familiar with the humanoid robot.
Elon Musk makes Optimus’ plural term official
Elon Musk posted a number of Optimus-related posts on X this weekend. On Saturday, he stated that Optimus would be the Von Neumann probe, a machine that could eventually be capable of replicating itself. This capability, it seems, would be the key to Tesla achieving Elon Musk’s ambitious Optimus production targets.
Amidst the conversations about Optimus on X, a user of the social media platform asked the CEO what the plural term for the humanoid robot will be. As per Musk, Tesla will be setting the plural term for Optimus since the company also decided on the robot’s singular term. “Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote in his reply on X.
This makes it official. For media outlets such as Teslarati, numerous Optimus bots are now called Optimi. It rolls off the tongue pretty well, too.
Optimi will be a common sight worldwide
While Musk’s comment may seem pretty mundane to some, it is actually very important. Optimus is intended to be Tesla’s highest volume product, with the CEO estimating that the humanoid robot could eventually see annual production rates in the hundreds of millions, perhaps even more. Since Optimi will be a very common sight worldwide, it is good that people can now get used to terms describing the humanoid robot.
During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-Optimi-per-year production line at the Fremont Factory. Giga Texas would get an even bigger Optimus production line, which should be capable of producing tens of millions of Optimi per year.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.



