Connect with us
Falcon 9 B1049 stands at LC-40 ahead of SpaceX's first dedicated Starlink launch. (SpaceX) Falcon 9 B1049 stands at LC-40 ahead of SpaceX's first dedicated Starlink launch. (SpaceX)

News

SpaceX reveals new Starlink satellite details 24 hours from launch

Falcon 9 B1049 stands at LC-40 ahead of SpaceX's first dedicated Starlink launch. (SpaceX)

Published

on

Less than 24 hours before SpaceX’s first dedicated Starlink mission is scheduled to lift off, the company revealed a handful of new details about the design of the 60 satellites cocooned inside Falcon 9’s fairing.

The Falcon 9 booster assigned to launch the Starlink v0.9 mission – B1049 – has already flown twice before in September 2018 and January 2019 and will likely take part in many additional launches prior to retirement. In support of B1049’s hopeful future, drone ship Of Course I Still Love You (OCISLY) arrived at its recovery location on May 13th, an impressive 620 km (385 mi) downrange relative to the launch’s low target orbit (440 km, 270 mi).

(Extra) smallsats

The combination of a distant booster recovery and a low target orbit can only mean one thing: the Starlink v0.9’s satellite payload is extremely heavy. As it just so happens, that is exactly the case per details included in SpaceX’s official press kit (PDF).

“With a flat-panel design featuring multiple high-throughput antennas and a single solar array, each Starlink satellite weighs approximately 227kg, allowing SpaceX to maximize mass production and take full advantage of Falcon 9’s launch capabilities. To adjust position on orbit, maintain intended altitude, and deorbit, Starlink satellites feature Hall thrusters powered by krypton. Designed and built upon the heritage of Dragon, each spacecraft is equipped with a Startracker navigation system that allows SpaceX to point the satellites with precision. Importantly, Starlink satellites are capable of tracking on-orbit debris and autonomously avoiding collisions. Additionally, 95 percent of all components of this design will quickly burn [up] in Earth’s atmosphere at the end of each satellite’s lifecycle—exceeding all current safety standards—with future iterative designs moving to complete disintegration.”

SpaceX’s first two Starlink prototype satellites deploy from Falcon 9, February 2018. (SpaceX)

First and foremost, an individual satellite mass of around 227 kg (500 lb) is an impressive achievement, nearly halving the mass of the Tintin A/B prototypes SpaceX launched back in February 2018. For context, OneWeb’s essentially finalized satellite design weighs ~150 kg (330 lb) each and relies on a ~1050 kg (2310 lb) adapter capable of carrying ~30 satellites. Accounting for the adapter, that translates to ~180 kg (400 lb) per OneWeb satellite, around 25% lighter than Starlink v0.9 spacecraft.

However, assuming SpaceX has effectively achieved its desired per-satellite throughput of ~20 gigabits per second (Gbps), Starlink v0.9 could provide more than twice the performance of OneWeb’s satellites (PDF). These are still development satellites, however, and don’t carry the laser interlinks that will be standard on the all future spacecraft, likely increasing their mass an additional ~10%.

The second phase of Starlink testing – 60 advanced satellites – in a single fairing. (SpaceX)

Despite the technical unknowns, it can be definitively concluded that SpaceX’s Starlink satellite form factor and packing efficiency are far ahead of anything comparable. Relative to the rockets it competes with, Falcon 9’s fairing is actually on the smaller side, but SpaceX has still managed to fit an incredible 60 fairly high-performance spacecraft inside it with plenty of room to spare. Additionally, SpaceX CEO Elon Musk says that these “flat-panel” Starlink satellites have no real adapter or dispenser, relying instead on their own structure to support the full stack. How each satellite will deploy on orbit is to be determined but it will likely be no less unorthodox than their integrated Borg cube-esque appearance.

That efficiency also means that the Starlink v0.9 is massive. At ~227 kg per satellite, the minimum mass is about 13,800 kg (30,400 lb), easily making it the heaviest payload SpaceX has ever attempted to launch. It’s difficult to exaggerate how ambitious a start this is for the company’s internal satellite development program – Starlink has gone from two rough prototypes to 60 satellites and one of the heaviest communications satellite payloads ever in less than a year and a half.

[Insert Kryptonite joke here]

Beyond their lightweight and space-efficient flat-panel design, the next most notable feature of SpaceX’s Starlink v0.9 satellites is their propulsion system of choice. Not only has SpaceX designed, built, tested, and qualified its own Hall Effect thrusters (HETs) for Starlink, but it has based those thrusters on krypton instead of industry-standard xenon gas propellant.

Based on a cursory review of academic and industry research into the technology, krypton-based Hall effect thrusters can beat xenon’s ISP (chemical efficiency) by 10-15% but produce 15-25% less thrust per a given power input. Additionally, krypton thrusters are also 15-25% less efficient than xenon thrusters, meaning that krypton generally requires significantly more power to match xenon’s thrust. However, the likeliest explanation for SpaceX’s choice of krypton over less exotic options is simple: firm prices are hard to come by for such rare noble gases, but krypton costs at least 5-10 times less than xenon for a given mass.

Advertisement
Hall effect thrusters can typically operate on most noble gases, although they are usually optimized for one or a few options. (Nakles, Hargus, & Corey, 2011)

At the costs SpaceX is targeting ($500k-$1M per satellite), the price of propellant alone (say 25-50 kg) could be a major barrier to satellite affordability – 50 kg of xenon costs at least $100,000, while 50 kg of krypton is more like $10,000-25,000. The more propellant each Starlink satellite can carry, the longer each spacecraft can safely operate, another way to lower the lifetime cost of a satellite megaconstellation.

SpaceX’s dedicated Starlink launch debut is set to lift off no earlier than 10:30pm EDT (02:30 UTC), May 15th. This is not a webcast you want to miss!

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla owners surpass 8 billion miles driven on FSD Supervised

Tesla shared the milestone as adoption of the system accelerates across several markets.

Published

on

Credit: Tesla

Tesla owners have now driven more than 8 billion miles using Full Self-Driving Supervised, as per a new update from the electric vehicle maker’s official X account. 

Tesla shared the milestone as adoption of the system accelerates across several markets.

“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average. 

The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.

Advertisement

At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.

Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.

As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.

During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.

Advertisement
Continue Reading

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading