News
SpaceX reveals new Starlink satellite details 24 hours from launch
Less than 24 hours before SpaceX’s first dedicated Starlink mission is scheduled to lift off, the company revealed a handful of new details about the design of the 60 satellites cocooned inside Falcon 9’s fairing.
The Falcon 9 booster assigned to launch the Starlink v0.9 mission – B1049 – has already flown twice before in September 2018 and January 2019 and will likely take part in many additional launches prior to retirement. In support of B1049’s hopeful future, drone ship Of Course I Still Love You (OCISLY) arrived at its recovery location on May 13th, an impressive 620 km (385 mi) downrange relative to the launch’s low target orbit (440 km, 270 mi).
(Extra) smallsats
The combination of a distant booster recovery and a low target orbit can only mean one thing: the Starlink v0.9’s satellite payload is extremely heavy. As it just so happens, that is exactly the case per details included in SpaceX’s official press kit (PDF).
“With a flat-panel design featuring multiple high-throughput antennas and a single solar array, each Starlink satellite weighs approximately 227kg, allowing SpaceX to maximize mass production and take full advantage of Falcon 9’s launch capabilities. To adjust position on orbit, maintain intended altitude, and deorbit, Starlink satellites feature Hall thrusters powered by krypton. Designed and built upon the heritage of Dragon, each spacecraft is equipped with a Startracker navigation system that allows SpaceX to point the satellites with precision. Importantly, Starlink satellites are capable of tracking on-orbit debris and autonomously avoiding collisions. Additionally, 95 percent of all components of this design will quickly burn [up] in Earth’s atmosphere at the end of each satellite’s lifecycle—exceeding all current safety standards—with future iterative designs moving to complete disintegration.”

First and foremost, an individual satellite mass of around 227 kg (500 lb) is an impressive achievement, nearly halving the mass of the Tintin A/B prototypes SpaceX launched back in February 2018. For context, OneWeb’s essentially finalized satellite design weighs ~150 kg (330 lb) each and relies on a ~1050 kg (2310 lb) adapter capable of carrying ~30 satellites. Accounting for the adapter, that translates to ~180 kg (400 lb) per OneWeb satellite, around 25% lighter than Starlink v0.9 spacecraft.
However, assuming SpaceX has effectively achieved its desired per-satellite throughput of ~20 gigabits per second (Gbps), Starlink v0.9 could provide more than twice the performance of OneWeb’s satellites (PDF). These are still development satellites, however, and don’t carry the laser interlinks that will be standard on the all future spacecraft, likely increasing their mass an additional ~10%.

Despite the technical unknowns, it can be definitively concluded that SpaceX’s Starlink satellite form factor and packing efficiency are far ahead of anything comparable. Relative to the rockets it competes with, Falcon 9’s fairing is actually on the smaller side, but SpaceX has still managed to fit an incredible 60 fairly high-performance spacecraft inside it with plenty of room to spare. Additionally, SpaceX CEO Elon Musk says that these “flat-panel” Starlink satellites have no real adapter or dispenser, relying instead on their own structure to support the full stack. How each satellite will deploy on orbit is to be determined but it will likely be no less unorthodox than their integrated Borg cube-esque appearance.
That efficiency also means that the Starlink v0.9 is massive. At ~227 kg per satellite, the minimum mass is about 13,800 kg (30,400 lb), easily making it the heaviest payload SpaceX has ever attempted to launch. It’s difficult to exaggerate how ambitious a start this is for the company’s internal satellite development program – Starlink has gone from two rough prototypes to 60 satellites and one of the heaviest communications satellite payloads ever in less than a year and a half.
[Insert Kryptonite joke here]
Beyond their lightweight and space-efficient flat-panel design, the next most notable feature of SpaceX’s Starlink v0.9 satellites is their propulsion system of choice. Not only has SpaceX designed, built, tested, and qualified its own Hall Effect thrusters (HETs) for Starlink, but it has based those thrusters on krypton instead of industry-standard xenon gas propellant.
Based on a cursory review of academic and industry research into the technology, krypton-based Hall effect thrusters can beat xenon’s ISP (chemical efficiency) by 10-15% but produce 15-25% less thrust per a given power input. Additionally, krypton thrusters are also 15-25% less efficient than xenon thrusters, meaning that krypton generally requires significantly more power to match xenon’s thrust. However, the likeliest explanation for SpaceX’s choice of krypton over less exotic options is simple: firm prices are hard to come by for such rare noble gases, but krypton costs at least 5-10 times less than xenon for a given mass.

At the costs SpaceX is targeting ($500k-$1M per satellite), the price of propellant alone (say 25-50 kg) could be a major barrier to satellite affordability – 50 kg of xenon costs at least $100,000, while 50 kg of krypton is more like $10,000-25,000. The more propellant each Starlink satellite can carry, the longer each spacecraft can safely operate, another way to lower the lifetime cost of a satellite megaconstellation.
SpaceX’s dedicated Starlink launch debut is set to lift off no earlier than 10:30pm EDT (02:30 UTC), May 15th. This is not a webcast you want to miss!
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Elon Musk and James Cameron find middle ground in space and AI despite political differences
Musk responded with some positive words for the director on X.
Avatar director James Cameron has stated that he can still agree with Elon Musk on space exploration and AI safety despite their stark political differences.
In an interview with Puck’s The Town podcast, the liberal director praised Musk’s SpaceX achievements and said higher priorities must unite them, such as space travel and artificial intelligence. Musk responded with some positive words for the director on X.
A longtime mutual respect
Cameron and Musk have bonded over technology for years. As far back as 2011, Cameron told NBC News that “Elon is making very strong strides. I think he’s the likeliest person to step into the shoes of the shuttle program and actually provide human access to low Earth orbit. So… go, Elon.” Cameron was right, as SpaceX would go on to become the dominant force in spaceflight over the years.
Even after Musk’s embrace of conservative politics and his roles as senior advisor and former DOGE head, Cameron refused to cancel his relationship with the CEO. “I can separate a person and their politics from the things that they want to accomplish if they’re aligned with what I think are good goals,” Cameron said. Musk appreciated the director’s comments, stating that “Jim understands physics, which is rare in Hollywood.”
Shared AI warnings
Both men have stated that artificial intelligence could be an existential threat to humanity, though Musk has noted that Tesla’s products such as Optimus could usher in an era of sustainable abundance. Musk recently predicted that money and jobs could become irrelevant with advancing AI, while Cameron warned of a deeper crisis, as noted in a Fox News report.
“Because the overall risk of AI in general… is that we lose purpose as people. We lose jobs. We lose a sense of, ‘Well, what are we here for?’” Cameron said. “We are these flawed biological machines, and a computer can be theoretically more precise, more correct, faster, all of those things. And that’s going to be a threshold existential issue.”
He concluded: “I just think it’s important for us as a human civilization to prioritize. We’ve got to make this Earth our spaceship. That’s really what we need to be thinking.”
News
Blue Origin announces Super-Heavy New Glenn 9×4 to Rival SpaceX Starship
The announcement followed the company’s successful NG-2 launch on November 13.
Blue Origin has revealed plans to develop New Glenn 9×4, a “super heavy” rocket designed to deliver 70 metric tons to low-Earth orbit and directly compete with SpaceX’s Starship.
The announcement followed the company’s successful NG-2 launch on November 13, which deployed NASA’s ESCAPADE (Escape and Plasma Acceleration Dynamics Explorers) Mars mission and landed the first stage.
Upgraded engines and reusability
As noted in a Universe Today report, Blue Origin will roll out upgraded BE-4 engines producing 640,000 lbf each, up from 550,000 lbf, starting with NG-3. This should boost the New Glenn rocket’s total first-stage thrust to 4.5 million pounds. Upper-stage BE-3U engines are expected to improve from 320,000 lbf to 400,000 lbf over the next few flights as well.
“These enhancements will immediately benefit customers already manifested on New Glenn to fly to destinations including low-Earth orbit, the Moon, and beyond. Additional vehicle upgrades include a reusable fairing to support increased flight rates, an updated lower-cost tank design, and a higher-performing and reusable thermal protection system to improve turnaround time,” Blue Origin noted.
New Glenn “Super Heavy” 9×4
The super-heavy New Glenn 9×4, with nine BE-4s on the booster, four BE-3Us on the upper stage, will feature an 8.7-meter payload fairing. Blue Origin expects New Glenn 9×4 to be capable of transporting 70 metric tons to LEO, 14 tons to GSO, and 20 tons to trans-lunar injection, as noted by the company in a blog post. This is very impressive, as New Glenn 9×4’s capacity exceeds Falcon Heavy, SpaceX’s largest rocket available to consumers today. Falcon Heavy is capable of carrying up to 64 metric tons to low Earth orbit in a fully expendable configuration.
That being said, SpaceX’s Starship’s capacity is extremely impressive. As per SpaceX, Starship is designed to be capable of carrying up to 100-150 metric tonnes to orbit in its fully reusable configuration. At its expendable configuration, Starship’s capacity enters unheard-of territory, with SpaceX stating that the vehicle could transport 250 metric tonnes of cargo.
News
Tesla FSD approved for testing in Nacka, Sweden, though municipality note reveals aggravating detail
Nacka, Sweden, a municipality just a few miles from Stockholm, has given its approval for FSD tests.
Tesla has secured approval for FSD testing in an urban environment in Sweden. As per recent reports from the Tesla community, Nacka, Sweden, a municipality just a few miles from Stockholm, has given its approval for FSD tests.
A look at the municipality’s note regarding FSD’s approval, however, reveals something quite aggravating.
FSD testing approval secured
As per Tesla watcher and longtime shareholder Alexander Kristensen, Nacka is governed by the Moderate Party. The shareholder also shared the municipality’s protocol notes regarding approval for FSD’s tests.
“It is good that Nacka can be a place for test-driving self-driving cars. This is future technology that can both facilitate mobility and make transportation cheaper and more environmentally friendly,” the note read.
The update was received positively by the Tesla community on social media, as it suggests that the electric vehicle maker is making some legitimate headway in releasing FSD into the region. Sweden has been particularly challenging as well, so securing approval in Nacka is a notable milestone for the company’s efforts.
Aggravating details
A look at the notes from Nacka shows that FSD’s proposed tests still met some opposition from some officials. But while some critics might typically point to safety issues as their reasons for rejecting FSD, those who opposed the system in Nacka openly cited Tesla’s conflict with trade union IF Metall in their arguments. Fortunately, Nacka officials ultimately decided in Tesla’s favor as the company’s issues with the country’s unions are a completely different matter.
“The left-wing opposition (S, Nackalistan, MP and V) voted no to this, referring to the fact that the applicant company Tesla is involved in a labor market conflict and does not want to sign a collective agreement. We believe that this is not an acceptable reason for the municipality to use its authority to interfere in a labor law conflict.
“Signing a collective agreement is not an obligation, and the company has not committed any crime. The municipality should contribute to technological development and progress, not work against the future,” the note read.
