Connect with us

News

SpaceX Mars landing expert talks Starship recovery challenges in new interview

Starship Mk1 is in the late stages of assembly and integration at SpaceX's Boca Chica, Texas facilities. (SpaceX)

Published

on

Formerly responsible for developing Falcon 9 (and Heavy) into the routinely-landing reusable rocket it is today, senior SpaceX engineer Lars Blackmore says he now has one primary focus: figuring out how to land Starship on Earth, the Moon, and Mars.

A graduate of University of Cambridge and MIT, the latter of which interviewed him on October 23rd for an “Alumni Stories” blog, Lars Blackmore has become famous for his groundbreaking work in guidance, navigation, and control (GNC). After graduating with honors from Cambridge and earning a PhD from MIT, Dr. Blackmore joined NASA in 2007 and immersed himself in “precision Mars landing”, part of a more general focus on figuring out how to autonomously control vehicles in uncertain conditions.

In his last year at NASA, Blackmore co-invented an algorithm known as G-FOLD (Guidance for Fuel Optimal Large Divert) that should theoretically enable precision landings on Mars, improving the state of the art by two full orders of magnitude (+/- 10 km to +/- 100 m). In 2011, he departed NASA and joined SpaceX, where he lead the development of the GNC technology needed to successfully and reliably recovery Falcon 9 boosters. Although the same could be said for any number of critical, groundbreaking systems that had to be developed, the onboard software that autonomously guides Falcon 9 landings on the fly is one of many things that booster recovery and reuse would be wholly impossible without.

After numerous failed attempts, all part SpaceX’s preferred learning process, Falcon 9 successfully landed for the first time on December 21st, 2015. As they say, the rest is history: in the roughly four years since that milestone landing, SpaceX has successfully completed 57 orbital launches, recovered boosters 43 more times, and reused flight-proven boosters on 23 launches. Since that first success, more than half of all SpaceX launches have been followed by a successful booster landing (or two).

Three of SpaceX’s thrice-flown Falcon 9 boosters are pictured here: B1046, B1048, and B1049. (Tom Cross & Pauline Acalin)

Back to Mars

In 2018, Dr. Blackmore officially took on a new full-time role as SpaceX’s Principal Mars Landing Engineer. As the namesake suggests, this meant handing (now semi-routine) Falcon 9 and Heavy GNC development to a strong team and beginning to tackle an array of new problems that will need to be solved for SpaceX to reach the Moon, Mars, and beyond.

Following radical design modifications made to Starship in 2018 and again in 2019, SpaceX is pursuing a radically different method of recovery with Starship (the upper stage), while Super Heavy will more directly follow in the footsteps of Falcon 9/Heavy. Starship, however, is being designed to perform a guided descent more akin to a skydiver falling straight down, using flaps at its nose and tail (explicitly “not wings”) to accurately guide its fall.

As little as a few hundred meters above the ground, Starship will then perform a radical maneuver, igniting its Raptor engines to flip around, burn in the opposite direction to counteract that sideways boost, and finally coming in for a precise landing on Earth/Mars/the Moon.

Advertisement
-->

Beyond the new GNC software and knowledge needed to make that maneuver real, Blackmore is also responsible for Starship atmospheric entry, no less critical to enabling precise, repeatable landings from orbital velocity to touchdown. In his recent interview with University of Cambridge staff, Lars revealed that his role as Principal Mars Landing Engineer involved a far wider scope than his previous GNC-centered work, with the goal instead being to design a launch vehicle (Starship) from the ground up to be easily recovered and reused. Falcon 9 Block 5 may be radically different than the ‘V1.0’ rocket that debuted in 2010, but it’s still ultimately a product of retroactive engineering.

With Starship and Super Heavy, SpaceX instead wants to take the vast wealth of knowledge and experience gained from F9/FH and build the vehicle from the ground up to be optimized for full reuse. Ultimately, Dr. Blackmore stated that “landing Starship will be much harder than landing Falcon 9, but if [SpaceX] can do it, it will be revolutionary.”

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

NVIDIA CEO Jensen Huang commends Tesla’s Elon Musk for early belief

“And when I announced DGX-1, nobody in the world wanted it. I had no purchase orders, not one. Nobody wanted to buy it. Nobody wanted to be part of it, except for Elon.”

Published

on

Credit: NVIDIA

NVIDIA CEO Jensen Huang appeared on the Joe Rogan Experience podcast on Wednesday and commended Tesla CEO Elon Musk for his early belief in what is now the most valuable company in the world.

Huang and Musk are widely regarded as two of the greatest tech entrepreneurs of the modern era, with the two working in conjunction as NVIDIA’s chips are present in Tesla vehicles, particularly utilized for self-driving technology and data collection.

Nvidia CEO Jensen Huang regrets not investing more in Elon Musk’s xAI

Both CEOs defied all odds and created companies from virtually nothing. Musk joined Tesla in the early 2000s before the company had even established any plans to build a vehicle. Jensen created NVIDIA in the booth of a Denny’s restaurant, which has been memorialized with a plaque.

On the JRE episode, Rogan asked about Jensen’s relationship with Elon, to which the NVIDIA CEO said that Musk was there when nobody else was:

“I was lucky because I had known Elon Musk, and I helped him build the first computer for Model 3, the Model S, and when he wanted to start working on an autonomous vehicle. I helped him build the computer that went into the Model S AV system, his full self-driving system. We were basically the FSD computer version 1, and so we were already working together.

And when I announced DGX-1, nobody in the world wanted it. I had no purchase orders, not one. Nobody wanted to buy it. Nobody wanted to be part of it, except for Elon.

He goes ‘You know what, I have a company that could really use this.’ I said, Wow, my first customer. And he goes, it’s an AI company, and it’s a nonprofit and and we could really use one of these supercomputers. I boxed one up, I drove it up to San Francisco, and I delivered it to the Elon in 2016.”

The first DGX-1 AI supercomputer was delivered personally to Musk when he was with OpenAI, which provided crucial early compute power for AI research, accelerating breakthroughs in machine learning that underpin modern tools like ChatGPT.

Tesla’s Nvidia purchases could reach $4 billion this year: Musk

The long-term alliance between NVIDIA and Tesla has driven over $2 trillion in the company’s market value since 2016.

Continue Reading

Elon Musk

GM CEO Mary Barra says she told Biden to give Tesla and Musk EV credit

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Published

on

General Motors CEO Mary Barra said in a new interview on Wednesday that she told President Joe Biden to credit Tesla and its CEO, Elon Musk, for the widespread electric vehicle transition.

She said she told Biden this after the former President credited her and GM for leading EV efforts in the United States.

During an interview at the New York Times Dealbook Summit with Andrew Ross Sorkin, Barra said she told Biden that crediting her was essentially a mistake, and that Musk and Tesla should have been explicitly mentioned (via Business Insider):

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Back in 2021, President Biden visited GM’s “Factory Zero” plant in Detroit, which was the centerpiece of the company’s massive transition to EVs. The former President went on to discuss the EV industry, and claimed that GM and Barra were the true leaders who caused the change:

“In the auto industry, Detroit is leading the world in electric vehicles. You know how critical it is? Mary, I remember talking to you way back in January about the need for America to lead in electric vehicles. I can remember your dramatic announcement that by 2035, GM would be 100% electric. You changed the whole story, Mary. You did, Mary. You electrified the entire automotive industry. I’m serious. You led, and it matters.”

People were baffled by the President’s decision to highlight GM and Barra, and not Tesla and Musk, who truly started the transition to EVs. GM, Ford, and many other companies only followed in the footsteps of Tesla after it started to take market share from them.

Elon Musk and Tesla try to save legacy automakers from Déjà vu

Musk would eventually go on to talk about Biden’s words later on:

They have so much power over the White House that they can exclude Tesla from an EV Summit. And, in case the first thing, in case that wasn’t enough, then you have President Biden with Mary Barra at a subsequent event, congratulating Mary for having led the EV revolution.”

In Q4 2021, which was shortly after Biden’s comments, Tesla delivered 300,000 EVs. GM delivered just 26.

Continue Reading

News

Tesla Full Self-Driving shows confident navigation in heavy snow

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease.

Published

on

Credit: Grok

Tesla Full Self-Driving is getting its first taste of Winter weather for late 2025, as snow is starting to fall all across the United States.

The suite has been vastly improved after Tesla released v14 to many owners with capable hardware, and driving performance, along with overall behavior, has really been something to admire. This is by far the best version of FSD Tesla has ever released, and although there are a handful of regressions with each subsequent release, they are usually cleared up within a week or two.

Tesla is releasing a modified version of FSD v14 for Hardware 3 owners: here’s when

However, adverse weather conditions are something that Tesla will have to confront, as heavy rain, snow, and other interesting situations are bound to occur. In order for the vehicles to be fully autonomous, they will have to go through these scenarios safely and accurately.

One big issue I’ve had, especially in heavy rain, is that the camera vision might be obstructed, which will display messages that certain features’ performance might be degraded.

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease:

Moving into the winter months, it will be very interesting to see how FSD handles even more concerning conditions, especially with black ice, freezing rain and snow mix, and other things that happen during colder conditions.

We are excited to test it ourselves, but I am waiting for heavy snowfall to make it to Pennsylvania so I can truly push it to the limit.

Continue Reading