News
SpaceX Mars landing expert talks Starship recovery challenges in new interview
Formerly responsible for developing Falcon 9 (and Heavy) into the routinely-landing reusable rocket it is today, senior SpaceX engineer Lars Blackmore says he now has one primary focus: figuring out how to land Starship on Earth, the Moon, and Mars.
A graduate of University of Cambridge and MIT, the latter of which interviewed him on October 23rd for an “Alumni Stories” blog, Lars Blackmore has become famous for his groundbreaking work in guidance, navigation, and control (GNC). After graduating with honors from Cambridge and earning a PhD from MIT, Dr. Blackmore joined NASA in 2007 and immersed himself in “precision Mars landing”, part of a more general focus on figuring out how to autonomously control vehicles in uncertain conditions.
In his last year at NASA, Blackmore co-invented an algorithm known as G-FOLD (Guidance for Fuel Optimal Large Divert) that should theoretically enable precision landings on Mars, improving the state of the art by two full orders of magnitude (+/- 10 km to +/- 100 m). In 2011, he departed NASA and joined SpaceX, where he lead the development of the GNC technology needed to successfully and reliably recovery Falcon 9 boosters. Although the same could be said for any number of critical, groundbreaking systems that had to be developed, the onboard software that autonomously guides Falcon 9 landings on the fly is one of many things that booster recovery and reuse would be wholly impossible without.
After numerous failed attempts, all part SpaceX’s preferred learning process, Falcon 9 successfully landed for the first time on December 21st, 2015. As they say, the rest is history: in the roughly four years since that milestone landing, SpaceX has successfully completed 57 orbital launches, recovered boosters 43 more times, and reused flight-proven boosters on 23 launches. Since that first success, more than half of all SpaceX launches have been followed by a successful booster landing (or two).

Back to Mars
In 2018, Dr. Blackmore officially took on a new full-time role as SpaceX’s Principal Mars Landing Engineer. As the namesake suggests, this meant handing (now semi-routine) Falcon 9 and Heavy GNC development to a strong team and beginning to tackle an array of new problems that will need to be solved for SpaceX to reach the Moon, Mars, and beyond.
Following radical design modifications made to Starship in 2018 and again in 2019, SpaceX is pursuing a radically different method of recovery with Starship (the upper stage), while Super Heavy will more directly follow in the footsteps of Falcon 9/Heavy. Starship, however, is being designed to perform a guided descent more akin to a skydiver falling straight down, using flaps at its nose and tail (explicitly “not wings”) to accurately guide its fall.
As little as a few hundred meters above the ground, Starship will then perform a radical maneuver, igniting its Raptor engines to flip around, burn in the opposite direction to counteract that sideways boost, and finally coming in for a precise landing on Earth/Mars/the Moon.
Beyond the new GNC software and knowledge needed to make that maneuver real, Blackmore is also responsible for Starship atmospheric entry, no less critical to enabling precise, repeatable landings from orbital velocity to touchdown. In his recent interview with University of Cambridge staff, Lars revealed that his role as Principal Mars Landing Engineer involved a far wider scope than his previous GNC-centered work, with the goal instead being to design a launch vehicle (Starship) from the ground up to be easily recovered and reused. Falcon 9 Block 5 may be radically different than the ‘V1.0’ rocket that debuted in 2010, but it’s still ultimately a product of retroactive engineering.
With Starship and Super Heavy, SpaceX instead wants to take the vast wealth of knowledge and experience gained from F9/FH and build the vehicle from the ground up to be optimized for full reuse. Ultimately, Dr. Blackmore stated that “landing Starship will be much harder than landing Falcon 9, but if [SpaceX] can do it, it will be revolutionary.”
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
SpaceX shades airline for seeking contract with Amazon’s Starlink rival
SpaceX employees, including its CEO Elon Musk, shaded American Airlines on social media this past weekend due to the company’s reported talks with Amazon’s Starlink rival, Leo.
Starlink has been adopted by several airlines, including United Airlines, Qatar Airways, Hawaiian Airlines, WestJet, Air France, airBaltic, and others. It has gained notoriety as an extremely solid, dependable, and reliable option for airline travel, as traditional options frequently cause users to lose connection to the internet.
Many airlines have made the switch, while others continue to mull the options available to them. American Airlines is one of them.
A report from Bloomberg indicates the airline is thinking of going with a Starlink rival owned by Amazon, called Leo. It was previously referred to as Project Kuiper.
American CEO Robert Isom said (via Bloomberg):
“While there’s Starlink, there are other low-Earth-orbit satellite opportunities that we can look at. We’re making sure that American is going to have what our customers need.”
Isom also said American has been in touch with Amazon about installing Leo on its aircraft, but he would not reveal the status of any discussions with the company.
The report caught the attention of Michael Nicolls, the Vice President of Starlink Engineering at SpaceX, who said:
“Only fly on airlines with good connectivity… and only one source of good connectivity at the moment…”
CEO Elon Musk replied to Nicolls by stating that American Airlines risks losing “a lot of customers if their connectivity solution fails.”
American Airlines will lose a lot of customers if their connectivity solution fails
— Elon Musk (@elonmusk) December 14, 2025
There are over 8,000 Starlink satellites in orbit currently, offering internet coverage in over 150 countries and territories globally. SpaceX expands its array of satellites nearly every week with launches from California and Florida, aiming to offer internet access to everyone across the globe.
Currently, the company is focusing on expanding into new markets, such as Africa and Asia.
News
Tesla Model Y Standard stuns in new range test, besting its Premium siblings
Tesla’s newer vehicles have continued to meet or exceed their EPA estimates. This is a drastic change, as every 2018-2023 model year Tesla that Edmunds assessed did not meet its range estimates.
The Tesla Model Y Standard stunned in a new range test performed by automotive media outlet Edmunds, besting all of its Premium siblings that are more expensive and more luxurious in terms of features.
Testing showed the Model Y Standard exceeded its EPA-estimated range rating of 321 miles, as Edmunds said it is the “longest-range Model Y that we’ve ever put on our loop.” In the past, some vehicles have come up short in comparison with EPA ranges; for example, the Model Y’s previous generation vehicle had an EPA-estimated range of 330 miles, but only drove 310.
Additionally, the Launch Series Model Y, the first configuration to be built in the “Juniper” program, landed perfectly on the EPA’s range estimates at 327 miles.
It was also more efficient than Premium offerings, as it utilized just 22.8 kWh to go 100 miles. The Launch Series used 26.8 kWh to travel the same distance.
It is tested using Edmunds’ traditional EV range testing procedure, which follows a strict route of 60 percent city and 40 percent highway driving. The average speed throughout the trip is 40 MPH, and the car is required to stay within 5 MPH of all posted speed limits.
Each car is also put in its most efficient drive setting, and the climate is kept on auto at 72 degrees.
“All of this most accurately represents the real-world driving that owners do day to day,” the publication says.
With this procedure, testing is as consistent as it can get. Of course, there are other factors, like temperature and traffic density. However, one thing is important to note: Tesla’s newer vehicles have continued to meet or exceed their EPA estimates. This is a drastic change, as every 2018-2023 model year Tesla that Edmunds assessed did not meet its range estimates.
Tesla Model Y Standard vs. Tesla Model Y Premium
Tesla’s two Model Y levels both offer a great option for whichever fits your budget. However, when you sit in both cars, you will notice distinct differences between them.
The Premium definitely has a more luxurious feel, while the Standard is stripped of many of the more premium features, like Vegan Leather Interior, acoustic-lined glass, and a better sound system.
You can read our full review of the Model Y Standard below:
Tesla Model Y Standard Full Review: Is it worth the lower price?
News
Xpeng CEO: Tesla FSD 14.2 has developed “near-Level 4” performance
While acknowledging that imperfections remain, the Xpeng CEO said FSD’s current iteration significantly surpasses last year’s capabilities.
Xpeng CEO He Xiaopeng has offered fresh praise for Tesla’s Full Self-Driving (FSD) system after revisiting Silicon Valley more than a year after his first hands-on experience.
Following extended test drives of Tesla vehicles running the latest FSD software, He stated that the system has made major strides, reinforcing his view that Tesla’s approach to autonomy is indeed the proper path towards autonomy.
Tesla FSD closing in on Level 4 driving
During his visit, He test-drove a Tesla equipped with FSD V14.2. He also rode in a Tesla Robotaxi. Over roughly five hours of driving across Silicon Valley and San Francisco, He said both vehicles delivered consistent and reassuring performance, a notable improvement from his experience a year earlier.
According to He, Tesla’s FSD has evolved from a smooth Level 2 advanced driver assistance system into what he described as a “near-Level 4” experience in terms of capabilities. While acknowledging that imperfections remain, the Xpeng CEO said FSD’s current iteration significantly surpasses last year’s capabilities. He also reiterated his belief that Tesla’s strategy of using the same autonomous software and hardware architecture across private vehicles and robotaxis is the right long-term approach, allowing users to bypass intermediate autonomy stages and move closer to Level 4 functionality.
He previously tested Tesla’s FSD V12.3.6 and Waymo vehicles in California in mid-2024, noting at the time that Waymo performed better in dense urban environments like San Francisco, while Tesla excelled in Silicon Valley and on highways.
Xpeng’s ambitious autonomy roadmap and internal challenge
The Silicon Valley visit also served as a benchmark for Xpeng’s own autonomy ambitions. He stated that Xpeng is looking to improve its VLA autonomous driving system to match the performance of Tesla’s FSD V14.2 within China by August 30, 2026. Xpeng is poised to release its VLA 2.0 smart driving software next quarter, though He cautioned that the initial version will not be able to match FSD V14.2’s capabilities, as noted in a CNEV Post report.
He also added a personal twist to the goal, publicly challenging Xpeng’s autonomous driving team. If the performance target is met by the 2026 deadline, the CEO stated that he will approve the creation of a Chinese-style cafeteria for Xpeng’s Silicon Valley team. If not, Liu Xianming, head of Xpeng’s autonomous driving unit, has pledged to run naked across the Golden Gate Bridge, He noted.