Connect with us
Crew Dragon is lifted off the deck of SpaceX recovery vessel GO Searcher after safely arriving at Port Canaveral, March 10th. (NASA) Crew Dragon is lifted off the deck of SpaceX recovery vessel GO Searcher after safely arriving at Port Canaveral, March 10th. (NASA)

News

SpaceX’s Crew Dragon explosion investigation almost complete, says executive

Crew Dragon C201 is lifted off the deck of a SpaceX recovery vessel on March 10th. C201 was destroyed in an explosion on April 20th. (NASA)

Published

on

Speaking at the 2019 AIAA Propulsion & Energy Forum, SpaceX Vice President of Build and Flight Reliability Hans Koenigsmann was significantly more confident that the company is just days or weeks away from wrapping up a serious Crew Dragon failure investigation.

On April 20th, flight-proven Crew Dragon capsule C201 experienced a catastrophic failure mode – largely a surprise to SpaceX – that completely destroyed the vehicle milliseconds prior to a planned static fire test. Given the obvious mortal danger such a failure would have posed to any crew aboard, SpaceX’s plans to conduct its first crewed Crew Dragon launch (Demo-2) in Q3 2019 were thrown out the window. Thankfully, Hans believes that SpaceX is just shy of concluding that investigation, “hopefully” permitting the launch of a critical abort test and Demo-2 before 2019 is out.

More specifically, Koenigsmann noted that SpaceX is currently planning to conduct a critical Crew Dragon in-flight abort (IFA) test in October or November, more or less in line with a recent report from NASASpaceflight.com that the test is targeted for November 11th, 2019. NASASpaceflight also confirmed that SpaceX still plans to fly Falcon 9 booster B1046.3 on the critical test flight, currently the only established plan to launch a thrice-flown booster, a potential first for SpaceX’s reusability program.

SpaceX’s IFA test is a continuation of the company’s suborbital Crew Dragon testing. Back in 2015, SpaceX successfully completed a pad abort test in which a low-fidelity Dragon mockup used its eight SuperDraco abort thrusters to replicate an escape from a rocket failure on the launch pad. SpaceX’s in-flight abort test will – like its namesake indicates – perform a similar test in flight, ensuring that Crew Dragon is able to safely escape from a failing Falcon 9 at Max Q, the point during launch where atmosphere-induced mechanical stress is at its peak.

In theory, demonstrating a successful pad and in-flight (Max Q) abort means that a given spacecraft is able to safely abort at all points during flight – from the pad all the way to orbit. It’s not clear if Crew Dragon is actually designed to be capable of what’s known as an “abort-to-orbit”, but the hardware is likely there if it’s needed.

Crew Dragon approaches the ISS during its orbital launch debut, March 3rd. (NASA)

On July 15th, Hans Koenigsmann and NASA Commercial Crew Program (CCP) manager Kathy Lueders went into significant detail with a preliminary Crew Dragon failure investigation update. They revealed that Crew Dragon’s April 20th explosion was traced to a likely mode, in which a “slug” of Dragon’s liquid oxidizer (nitrogen tetroxide, NTO) leaked and was subsequently smashed into a titanium valve by helium pressurized to several thousand PSI.

Said impact – effectively turning NTO into a bullet – thus created a spark in one or two ways: the titanium debris could have easily created sparks on its own, while NTO is also known to interact in violent and exotic ways with titanium under impact conditions. Either way, the fix is relatively simple (replace the valves and avoid titanium in the NTO pressurization system), but the fact that the design flaw existed in the first place serves as a much larger concern for the entirety of Crew Dragon’s joint SpaceX-NASA design and certification.

Ultimately, Hans seemed much more confident on August 19th than he was a month prior, indicating that the investigation is just shy of wrapping up. Once complete, SpaceX can complete the necessary modifications and get back on the saddle for Crew Dragon’s inaugural crewed launch and next abort test.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Cybercab sighting confirms one highly requested feature

The feature will likely allow the Cybercab to continue operating even in conditions when its cameras could be covered with dust, mud, or road grime.

Published

on

Credit: @DennisCW_/X

A recent sighting of Tesla’s Cybercab prototype in Chicago appears to confirm a long-requested feature for the autonomous two-seater. 

The feature will likely allow the Cybercab to continue operating even in conditions when its cameras could be covered with dust, mud, or road grime.

The Cybercab’s camera washer

The Cybercab prototype in question was sighted in Chicago, and its image was shared widely on social media. While the autonomous two-seater itself was visibly dirty, its rear camera area stood out as noticeably cleaner than the rest of the car. Traces of water were also visible on the trunk. This suggested that the Cybercab is equipped with a rear camera washer.

As noted by Model Y owner and industry watcher Sawyer Merritt, a rear camera washer is a feature many Tesla owners have requested for years, particularly in snowy or wet regions where camera obstruction can affect visibility and the performance of systems like Full Self-Driving (FSD).

While only the rear camera washer was clearly visible, the sighting raises the possibility that Tesla may equip the Cybercab’s other external cameras with similar cleaning systems. Given the vehicle’s fully autonomous design, redundant visibility safeguards would be a logical inclusion.

Advertisement
-->

The Cybercab in Tesla’s autonomous world

The Cybercab is Tesla’s first purpose-built autonomous ride-hailing vehicle, and it is expected to enter production later this year. The vehicle was unveiled in October 2024 at the “We, Robot” event in Los Angeles, and it is expected to be a major growth driver for Tesla as it continues its transition toward an AI- and robotics-focused company. The Cybercab will not include a steering wheel or pedals and is intended to carry one or two passengers per trip, a decision Tesla says reflects real-world ride-hailing usage data.

The Cybercab is also expected to feature in-vehicle entertainment through its center touchscreen, wireless charging, and other rider-focused amenities. Musk has also hinted that the vehicle includes far more innovation than is immediately apparent, stating on X that “there is so much to this car that is not obvious on the surface.”

Advertisement
-->
Continue Reading

News

Tesla seen as early winner as Canada reopens door to China-made EVs

Tesla had already prepared for Chinese exports to Canada in 2023 by equipping its Shanghai Gigafactory to produce a Canada-specific version of the Model Y.

Published

on

Credit: Tesla

Tesla seems poised to be an early beneficiary of Canada’s decision to reopen imports of Chinese-made electric vehicles, following the removal of a 100% tariff that halted shipments last year.

Thanks to Giga Shanghai’s capability to produce Canadian-spec vehicles, it might only be a matter of time before Tesla is able to export vehicles to Canada from China once more. 

Under the new U.S.–Canada trade agreement, Canada will allow up to 49,000 vehicles per year to be imported from China at a 6.1% tariff, with the quota potentially rising to 70,000 units within five years, according to Prime Minister Mark Carney. 

Half of the initial quota is reserved for vehicles priced under CAD 35,000, a threshold above current Tesla models, though the electric vehicle maker could still benefit from the rule change, as noted in a Reuters report.

Advertisement
-->

Tesla had already prepared for Chinese exports to Canada in 2023 by equipping its Shanghai Gigafactory to produce a Canada-specific version of the Model Y. That year, Tesla began shipping vehicles from Shanghai to Canada, contributing to a sharp 460% year-over-year increase in China-built vehicle imports through Vancouver. 

When Ottawa imposed a 100% tariff in 2024, however, Tesla halted those shipments and shifted Canadian supply to its U.S. and Berlin factories. With tariffs now reduced, Tesla could quickly resume China-to-Canada exports.

Beyond manufacturing flexibility, Tesla could also benefit from its established retail presence in Canada. The automaker operates 39 stores across Canada, while Chinese brands like BYD and Nio have yet to enter the Canadian market directly. Tesla’s relatively small lineup, which is comprised of four core models plus the Cybertruck, allows it to move faster on marketing and logistics than competitors with broader portfolios.

Advertisement
-->
Continue Reading

Elon Musk

Tesla confirms that work on Dojo 3 has officially resumed

“Now that the AI5 chip design is in good shape, Tesla will restart work on Dojo 3,” Elon Musk wrote in a post on X.

Published

on

(Credit: Tesla)

Tesla has restarted work on its Dojo 3 initiative, its in-house AI training supercomputer, now that its AI5 chip design has reached a stable stage. 

Tesla CEO Elon Musk confirmed the update in a recent post on X.

Tesla’s Dojo 3 initiative restarted

In a post on X, Musk said that with the AI5 chip design now “in good shape,” Tesla will resume work on Dojo 3. He added that Tesla is hiring engineers interested in working on what he expects will become the highest-volume AI chips in the world.

“Now that the AI5 chip design is in good shape, Tesla will restart work on Dojo3. If you’re interested in working on what will be the highest volume chips in the world, send a note to AI_Chips@Tesla.com with 3 bullet points on the toughest technical problems you’ve solved,” Musk wrote in his post on X. 

Musk’s comment followed a series of recent posts outlining Tesla’s broader AI chip roadmap. In another update, he stated that Tesla’s AI4 chip alone would achieve self-driving safety levels well above human drivers, AI5 would make vehicles “almost perfect” while significantly enhancing Optimus, and AI6 would be focused on Optimus and data center applications. 

Advertisement
-->

Musk then highlighted that AI7/Dojo 3 will be designed to support space-based AI compute.

Tesla’s AI roadmap

Musk’s latest comments helped resolve some confusion that emerged last year about Project Dojo’s future. At the time, Musk stated on X that Tesla was stepping back from Dojo because it did not make sense to split resources across multiple AI chip architectures. 

He suggested that clustering large numbers of Tesla AI5 and AI6 chips for training could effectively serve the same purpose as a dedicated Dojo successor. “In a supercomputer cluster, it would make sense to put many AI5/AI6 chips on a board, whether for inference or training, simply to reduce network cabling complexity & cost by a few orders of magnitude,” Musk wrote at the time.

Musk later reinforced that idea by responding positively to an X post stating that Tesla’s AI6 chip would effectively be the new Dojo. Considering his recent updates on X, however, it appears that Tesla will be using AI7, not AI6, as its dedicated Dojo successor. The CEO did state that Tesla’s AI7, AI8, and AI9 chips will be developed in short, nine-month cycles, so Dojo’s deployment might actually be sooner than expected. 

Advertisement
-->
Continue Reading