Connect with us

News

SpaceX’s second astronaut launch a step closer after NASA announcement

Portraits of Crew Dragon Demo-2's main and backup NASA astronauts. From left to right: Bob Behnken, Doug Hurley, Victor Glover, and Mike Hopkins. The latter two astronauts will make up half of Crew Dragon's first operational mission. (SpaceX)

Published

on

SpaceX’s second astronaut launch is a a step closer to flight after NASA and JAXA announced the third and fourth astronauts assigned to ride Crew Dragon to the International Space Station (ISS) on its first operational mission.

On the cusp of March 30th and 31st, the Japanese Space Agency (JAXA) made the first Crew Dragon-related announcement of the day, revealing the assignment of astronaut Soichi Noguchi to SpaceX’s Crew-1 launch. Hinging entirely on the success of SpaceX’s imminent Demo-2 astronaut launch debut, a critical demonstration mission scheduled to launch no earlier than mid-to-late May 2020, Crew Dragon’s Crew-1 mission will be the spacecraft’s first operational mission ferrying humans to and from the space station. NASA followed up JAXA’s announced hours later, revealing that astronaut Shannon Walker would be the fourth and final crew member aboard Crew Dragon’s Crew-1 launch.

Including Boeing’s Starliner and SpaceX’s Crew Dragon crewed demonstration missions, known as the Crewed Flight Test and Demonstration Mission 2 (Demo-2 or DM-2), respectively, NASA has purchased six astronaut launches from both providers. In theory, one Starliner and Crew Dragon launch per year – spaced out six or so months apart – should be enough to meet NASA’s space station transportation needs, meaning that the space agency’s 12 contracts should last until 2025 or 2026. Boeing’s Starliner appears to be delayed indefinitely after multiple near-catastrophic failures on its first Orbital Flight Test (OFT) but if SpaceX’s Demo-2 mission goes as planned, Crew Dragon could be set to enter operational duty as early as Q4 2020.

NASA and JAXA have officially assigned a full complement of crew to SpaceX’s second Crew Dragon astronaut launch. (NASA)

SpaceX’s Crew-1 mission manifest now includes NASA astronauts Mike Hopkins, Victor Glover, and Shannon Walker, as well as JAXA astronaut Soichi Noguchi and will likely carry an additional 100-200 kg (200-400 lb) of cargo to the International Space Station (ISS). While all eyes are reasonably on Crew Dragon’s Demo-2 mission, right now, the spacecraft’s Crew-1 through -5 missions are where SpaceX has the opportunity to gain extensive experience launching humans on an operational, semi-routine basis.

Making up at least half of the backbone of NASA’s new domestic astronaut launch capabilities, Crew Dragon and Falcon 9 will hopefully prove themselves to be as reliable and dependable as they and their predecessors have been over the years. Cargo Dragon, SpaceX’s first orbital-class spacecraft and the first private vehicle to visit the ISS, has successfully resupplied the space station and safely returned to Earth each of the 20 times the spacecraft reached orbit. Unsurprisingly, SpaceX ran into intermittent technical issues over those numerous flights, but all of those anomalies were solved on the fly and never prevented mission success or spacecraft recovery.

SpaceX’s Cargo Dragon spacecraft is just a week or so away from completing its last ISS resupply mission. (NASA)

Falcon 9’s first in-flight failure destroyed the CRS-7 Cargo Dragon spacecraft in June 2015 and cut the mission short before it could reach orbit, but the failure was entirely unrelated to Dragon. Falcon 9’s second catastrophic failure occurred less than 15 months later, also a fault of a small but explosive rocket design flaw. From January 2017 to March 2020, however, Falcon 9 and Falcon Heavy rockets have completed 58 consecutively successful launches. With that streak of success, by certain measures, Falcon has become the most reliable operational rocket family in the world, tied with ULA’s famously reliable Atlas V and slightly better than Arianespace’s Ariane 5.

In short, while Cargo Dragon can’t hold a candle to the sheer scale of Russia’s Soyuz and Progress spacecraft flight histories, Falcon 9 is one of the two most reliable launch vehicles in operation and Crew Dragon will stand on the back of one of the most reliable spacecraft ever built in recent history. With (perhaps more than a little) luck, Boeing’s Starliner spacecraft – launched atop Atlas V, the other most reliable operational rocket – will hopefully be able to develop its own record of reliability in the next several years, but it will never be able to compete with the Cargo Dragon heritage Crew Dragon directly benefits from.

Advertisement
-->
Boeing’s Starliner and SpaceX’s Crew Dragon spacecraft stand vertical at their respective launch pads in December 2019 and January 2020. Crew Dragon has now performed two successful full-up launches to Starliner’s lone partial failure. (Richard Angle)

Boeing’s next Starliner mission is up in the air after the spacecraft’s almost disastrous orbital launch debut. Most likely, NASA will require a second uncrewed flight test, this time including the space station rendezvous, docking, and departure attempt Boeing had to cancel after Starliner’s major software failure. A second OFT would likely be ready for flight no earlier than Q3 or Q4 2020, depending on NASA’s investigation findings and requirements. If NASA remains confident and things go perfectly during the likely OFT2 mission, Starliner’s Crew Flight Test (CFT) could maybe launch by the end of 2020.

Crew Dragon’s Demo-2 astronaut launch debut is aiming for what NASA says is a mid-to-late May launch, although the mission is more likely to fly in the late-May to mid-June time frame. If Demo-2 launches on schedule (H1 2020) and is as flawless as Crew Dragon’s uncrewed Demo-1 launch debut, SpaceX could be ready to launch its second astronaut mission (Crew-1) as early as Q4 2020, possibly around the start of the quarter. With so much contingent on near-term reviews and tests, schedules beyond Demo-2 are unsurprisingly fluid.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading