Connect with us

News

SpaceX ready for one more mission before Falcon Heavy’s maiden launch

Published

on

Set to be the nightcap of relatively slow January for SpaceX, the rocket company is nearing the end of preparations for the launch of a communications satellite co-owned by SES and the government of Luxembourg, known as GovSat-1/SES-16. Scheduled to lift off no earlier than 4:25PM EST (2125 GMT) on Tuesday, January 30, the launch will continue SES’ tradition of flying aboard reused SpaceX rockets, with the ~4000 kg communication satellite expected to be carried into orbit by Falcon 9 B1032 (Booster #32), a booster that first flew during the May 2017 launch of the National Reconnaissance Office’s (NRO) classified NROL-76 spacecraft.

A panorama of LC-40 ahead of its return to flight, the CRS-13 Cargo Dragon mission. The same pad will host GovSat-1 in just over 24 hours. (Tom Cross/Teslarati)

Following an incredible six flight-proven Falcon 9 launches in 2017, the very first year SpaceX began flying reused rockets, GovSat-1 will mark the first of many, many additional flight-proven launches to come in 2018. Even before the inaugural flights of the purpose-built, highly reusable Block 5 of Falcon 9, currently slated for sometime in the next several months, SpaceX is expected to conduct a flurry of flight-proven launches as it wears down its stock of soon-to-be-outdated rockets of the Block 3 and 4 varieties. Educated estimates place the number of reused launches at around five between February and April 2018, six if Falcon Heavy is included (both side boosters are flight-proven). A minimum of six more reused Falcon 9s are then expected to fly between May and the end of 2018, and this almost certainly does not account for the imminent introduction of Block 5.

It is reasonable to assume that the first successful flights of Falcon 9 Block 5 and first several manufactured cores will be followed only months later by a phase change towards reusability. This shift will likely see SpaceX move to a mode of operations that strongly encourages and subsidizes reused boosters as the default option for customers, with flights aboard new cores a comparatively rare alternative reserved only for unique holdouts like NASA, the USAF, and NRO.

Somewhat sadly, the inherent engineering limits of older versions of Falcon 9 and the imminent introduction of Block 5 mean that SpaceX has less and less of a need to recover flight proven boosters that have no hope of being cost-effectively refurbished and conducting additional flights. This attitude was highlighted with the fourth launch of ten Iridium NEXT satellites in late December 2017, which saw a flight-proven Falcon 9 conduct a controlled ocean ditch after separating from the second stage. While crew aboard at least one of SpaceX’s fleet of recovery vessels were tasked with attempting to recover any accessible floating debris after the first stage ditched into the ocean, it was very much intentionally expended, and SpaceX’s West coast drone ship never left port. GovSat-1 will see this intentional practice of expending recoverable boosters continue – Falcon 9 B1032 is also expected to ditch into the ocean, with no recovery attempt being made aboard the drone ship Of Course I Still Love You.

Nevertheless, SpaceX-leased recovery vessels GO Quest and GO Searcher were both seen leaving Port Canaveral, Florida yesterday, presumably in order to attempt the recovery of either floating debris from the first stage and/or the rocket’s payload fairing, a milestone that SpaceX is still striving to reach.

Follow along live as launch photographer Tom Cross and I cover these exciting proceedings as close to live as possible. Tom will be heading to Cape Canaveral Air Force Station early tomorrow morning in order to set up his remote cameras to capture yet another beautiful SpaceX launch.

Teslarati   –   Instagram Twitter

Advertisement

Tom CrossInstagram

Eric Ralph Twitter

 

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla rolls out new Supercharging safety feature in the U.S.

Published

on

tesla's nacs charging connector
Credit: Tesla

Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.

It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.

The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.

With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:

“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”

The feature was first spotted by Not a Tesla App.

This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.

For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.

Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.

This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.

Advertisement
Continue Reading

News

LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Published

on

Credit: Tesla Optimus/X

A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Humanoid robot battery deals

LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.

China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.

LF Energy Solution vs rivals

According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.

LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.

Continue Reading

News

Tesla receives approval for FSD Supervised tests in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden in a press release.

Published

on

Credit: Grok Imagine

Tesla has received regulatory approval to begin tests of its Full Self-Driving Supervised system on public roads in Sweden, a notable step in the company’s efforts to secure FSD approval for the wider European market. 

FSD Supervised testing in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden following cooperation with national authorities and local municipalities. The approval covers the Swedish Transport Administration’s entire road network, as well as urban and highways in the Municipality of Nacka.

Tesla shared some insights into its recent FSD approvals in a press release. “The approval shows that cooperation between authorities, municipalities and businesses enables technological leaps and Nacka Municipality is the first to become part of the transport system of the future. The fact that the driving of the future is also being tested on Swedish roads is an important step in the development towards autonomy in real everyday traffic,” the company noted. 

With approval secured for FSD tests, Tesla can now evaluate the system’s performance in diverse environments, including dense urban areas and high-speed roadways across Sweden, as noted in a report from Allt Om Elbil. Tesla highlighted that the continued development of advanced driver assistance systems is expected to pave the way for improved traffic safety, increased accessibility, and lower emissions, particularly in populated city centers.

Tesla FSD Supervised Europe rollout

FSD Supervised is already available to drivers in several global markets, including Australia, Canada, China, Mexico, New Zealand, and the United States. The system is capable of handling city and highway driving tasks such as steering, acceleration, braking, and lane changes, though it still requires drivers to supervise the vehicle’s operations.

Tesla has stated that FSD Supervised has accumulated extensive driving data from its existing markets. In Europe, however, deployment remains subject to regulatory approval, with Tesla currently awaiting clearance from relevant authorities.

The company reiterated that it expects to start rolling out FSD Supervised to European customers in early 2026, pending approvals. It would then be unsurprising if the company secures approvals for FSD tests in other European territories in the coming months. 

Continue Reading