Connect with us

News

SpaceX ships 200th Falcon second stage, highlighting the flip-side of booster reuse

Published

on

SpaceX has built and shipped its 200th Falcon second stage, highlighting the often underappreciated rocket’s record of achievement on the ground and in flight.

Approximately 13 years ago, in late 2009 or early 2010, SpaceX shipped the first flightworthy prototype of the first iteration of its Falcon 9 second stage. In June 2010, Falcon 9 lifted off on its inaugural test flight and, with the help of that second stage, successfully launched a boilerplate mockup of Dragon spacecraft into orbit. Since Falcon 9’s surprising inaugural success, SpaceX’s Falcon 9 and Falcon Heavy rockets have launched another 187 times for a total of 188 launches and 189 assembled rockets. Every one of those launches has required a new second stage, and all but one (Crew Dragon’s In-Flight Abort test) required a new Merlin Vacuum engine.

While SpaceX is most famous for the successful realization of rapidly reusable Falcon boosters, the company’s overall success is also inextricably linked to Falcon second stages, which are and always will be expended after every launch. For every spectacular Falcon booster landing or reuse record, a Falcon second stage either unceremoniously burns up in Earth’s atmosphere or finds itself stranded in orbit. As a result, even as SpaceX’s reusability has allowed it to launch more than ever before with a fleet of just 10-20 Falcon boosters, the company has had to expand the production of Falcon second stages extraordinary levels.

SpaceX just completed its 188th Falcon 9/Heavy launch, so the 200th flightworthy second stage and Merlin Vacuum (MVac) engine are probably scheduled to launch sometime in January 2023. In the last 365 days, SpaceX’s Falcon rockets have completed 59 successful orbital launches. Every launch has required a new second stage, so SpaceX, on average, has consistently built, shipped, and tested a new Falcon second stage every 6.2 days for more than a year.

Advertisement

Thanks to SpaceX’s record-breaking 2022 launch cadence, which has resulted in Falcon 9 launching more in one calendar year than any other rocket in history, the Falcon second stage has likely become the most-produced orbital rocket stage in decades. Barring surprises, SpaceX is on track to achieve CEO Elon Musk’s goal of 60 Falcon launches in 2022. But SpaceX isn’t done yet, and CEO Elon Musk says that the company is targeting “up to 100 launches” in 2023. After nearly doubling between early and late 2021, that will require Falcon second stage production to increase another ~67% year-over-year.

In its 12.5-year career, Falcon 9 has suffered three failures. In October 2012, on its third launch, one of Falcon 9’s nine Merlin 1C booster engines failed in flight. The main mission – a Dragon cargo mission to the International Space Station – was saved by the second stage, which autonomously compensated for the lost performance, but a secondary payload (Orbcomm’s first OG2 satellite prototype) was lost as a result. In June 2015, a faulty strut inside Falcon 9’s second stage caused a helium pressure vessel to break loose and rupture, destroying the rocket mid-flight. And in September 2016, during a prelaunch static fire test, a similar pressure vessel inside an upgraded Falcon 9’s second stage spontaneously sparked, causing an explosion that destroyed the rocket while it was still on the ground.

As a result, while problems with Falcon second stages have technically caused both of Falcon 9’s only catastrophic failures, it’s still true that a free-flying Falcon second stage has never failed in flight. The same is true for the second stage’s Merlin Vacuum engine: over hundreds of burns and more than 70,000 seconds of operation, MVac has never failed in flight.

SpaceX announced the completion of its 100th MVac engine in April 2020, which means that it took ~130 months to build the first 100 and ~30 months to build the next 100. (SpaceX)

After Falcon 9’s successful November 3rd, 2022 launch of the Eutelsat Hotbird 13G communications satellite, SpaceX’s Falcon rocket family has completed 160 launches without failure, arguably making it the most reliable rocket family in history. To achieve that feat with its partially-reusable Falcon 9 and Falcon Heavy rockets, SpaceX has had to master reusable and expendable orbital rockets to a degree that only a few other companies or space agencies in history can claim to have matched or exceeded, and that none have achieved simultaneously.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading