Connect with us

News

SpaceX Starlink launch suffers last-second scrub, ULA up next [update: double scrub]

ULA's latest Delta IV Heavy launch attempt is up next after a last-second SpaceX scrub. (ULA)

Published

on

Update: ULA has scrubbed today’s NROL-44 launch attempt after the weather at the launch site substantially worsened. The Delta IV Heavy rocket’s next shot at launch is now scheduled no earlier than 11:58 pm EDT (03:58 UTC), Tuesday, September 29th, just two hours after a SpaceX Falcon 9 is scheduled to launch the US military’s fourth upgraded GPS III satellite.

SpaceX’s eleventh Starlink launch of the year was scrubbed ~30 seconds before liftoff by bad weather, likely delaying the mission a few days and leaving ULA’s latest Delta IV Heavy launch attempt next in line.

Scheduled to lift off at 10:22 am EDT on Monday, September 28th, SpaceX’s 12th operational Starlink launch (V1 L12) nearly made it to liftoff before the company called the mission off, prioritizing mission success above all else. Given that SpaceX’s Starlink program puts the company in the unique position of being its own launch customer, the decision to let a relatively mild weather violation delay a Starlink mission by at least a few days is unintuitively encouraging.

It’s no secret that SpaceX has become the most successful private launch company in history and a commercial force to be reckoned with, handily overtaking United Launch Alliance (ULA) and Arianespace to acquire a vast majority of the commercial launch market share. Falcon 9 is on track to become the fastest commercial rocket in history to cross the 100-launch milestone and SpaceX is already well on its way to regularly out-launching entire countries with 20+ missions per year. The single biggest risk facing the company is arguably complacency and an infamous tendency known as “launch fever.”

The first twice-flown Falcon 9 payload fairing half is pictured here shortly before SpaceX scrubbed Starlink-12. (SpaceX)

At the cutting edge of spaceflight, constant, exhaustive vigilance is ultimately the only thing standing between a reliable rocket or spacecraft and catastrophic failure. Perhaps the single biggest threat to that vigilance is the somewhat understandable desire to avoid launch delays – a fact of life for rocketry that nevertheless costs time, money, and (to some) reputation. The term “launch” or “go fever” was originally colloquialized to describe the irresponsible managerial pressure to launch largely responsible for both of NASA’s catastrophic Space Shuttle failures.

Some (if not most) parts of SpaceX almost assuredly would rather avoid launch delays. The fact that the company continues to accept Starlink launch delays and respect Falcon 9’s limits strongly implies that SpaceX has found ways to prevent launch fever while still pushing the envelope of launch cadence and rocket reuse. Starlink-12, for example, was originally meant to launch on September 17th but was delayed ~10 days by strong ocean currents before being scrubbed seconds before launch on September 28th. Combined with the fact that SpaceX is technically free to accept more risk on its own Starlink launches, compounded delays will inevitably test the limits of any organization’s resolve.

Falcon 9 fogs up the camera moments before a scrubbed launch attempt. (SpaceX)

While the argument that SpaceX is technically the only direct stakeholder in Starlink missions is a bad-faith argument that could easily be made to push for increased risk tolerance, it’s only true in a vacuum. A Falcon 9 failure during a Starlink launch would still have major consequences for all of SpaceX’s customers, particularly delaying critical NASA astronaut and US military launches until a lengthy accident investigation is completed. SpaceX executives and managers involved in launch go/no-go decisions clearly understand this and act accordingly.

Starlink-12 will likely be recycled for another launch attempt sometime after ULA’s next Delta IV Heavy launch attempt and probably after SpaceX’s own GPS III SV04 mission for the US military, scheduled no earlier than (NET) 12:02 am EDT (04:02 UTC) and 9:55 pm EDT (01:55 UTC), September 29th, respectively. Catch ULA’s latest NROL-44 launch attempt at the company’s official webcast below.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla rolls out new Supercharging safety feature in the U.S.

Published

on

tesla's nacs charging connector
Credit: Tesla

Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.

It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.

The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.

With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:

“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”

The feature was first spotted by Not a Tesla App.

This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.

For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.

Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.

This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.

Continue Reading

News

LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Published

on

Credit: Tesla Optimus/X

A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Humanoid robot battery deals

LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.

China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.

LF Energy Solution vs rivals

According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.

LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.

Continue Reading

News

Tesla receives approval for FSD Supervised tests in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden in a press release.

Published

on

Credit: Grok Imagine

Tesla has received regulatory approval to begin tests of its Full Self-Driving Supervised system on public roads in Sweden, a notable step in the company’s efforts to secure FSD approval for the wider European market. 

FSD Supervised testing in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden following cooperation with national authorities and local municipalities. The approval covers the Swedish Transport Administration’s entire road network, as well as urban and highways in the Municipality of Nacka.

Tesla shared some insights into its recent FSD approvals in a press release. “The approval shows that cooperation between authorities, municipalities and businesses enables technological leaps and Nacka Municipality is the first to become part of the transport system of the future. The fact that the driving of the future is also being tested on Swedish roads is an important step in the development towards autonomy in real everyday traffic,” the company noted. 

With approval secured for FSD tests, Tesla can now evaluate the system’s performance in diverse environments, including dense urban areas and high-speed roadways across Sweden, as noted in a report from Allt Om Elbil. Tesla highlighted that the continued development of advanced driver assistance systems is expected to pave the way for improved traffic safety, increased accessibility, and lower emissions, particularly in populated city centers.

Tesla FSD Supervised Europe rollout

FSD Supervised is already available to drivers in several global markets, including Australia, Canada, China, Mexico, New Zealand, and the United States. The system is capable of handling city and highway driving tasks such as steering, acceleration, braking, and lane changes, though it still requires drivers to supervise the vehicle’s operations.

Tesla has stated that FSD Supervised has accumulated extensive driving data from its existing markets. In Europe, however, deployment remains subject to regulatory approval, with Tesla currently awaiting clearance from relevant authorities.

The company reiterated that it expects to start rolling out FSD Supervised to European customers in early 2026, pending approvals. It would then be unsurprising if the company secures approvals for FSD tests in other European territories in the coming months. 

Continue Reading