Connect with us

News

SpaceX Starlink launch ambitions just saved a space station resupply mission from bigger delays

Thanks to SpaceX's ambitious 2020 launch cadence, the latest Cargo Dragon mission has only been delayed a few days by the need to replace the rocket's second stage. (Richard Angle)

Published

on

SpaceX’s ambitious 2020 Starlink launch goals have unintentionally saved a Cargo Dragon spacecraft mission from much longer delays after a major part of its Falcon 9 rocket had to be replaced at the last second.

Known as SpaceX’s 20th NASA Commercial Resupply Services (CRS-20) mission, SpaceX’s Cargo Dragon spacecraft was initially scheduled to launch supplies to the International Space Station (ISS) as early as March 2nd, 2020, a date that recently slipped four days to 11:50 pm EDT (04:50 UTC), March 6th. Simultaneously, a separate Falcon 9 Starlink mission – assigned to a different launch pad – found itself delayed from March 4th to March 11th.

A day or so after news of the CRS-20 launch delay first broke, NASA published a blog post noting that SpaceX had taken the extraordinary step of fully replacing the mission’s Falcon 9 second stage, the part of the rocket (pictured underneath Dragon in the photo above) tasked with taking payloads from the edge of space into Earth orbit (or beyond). Triggered by a faulty component in its space-optimized Merlin Vacuum engine, the fact that SpaceX chose to replace the upper stage and still only delayed CRS-20’s launch by four days suggests that its ambitious Starlink launch plans are already creating positive side effects for commercial customers.

 
The last Cargo Dragon (Dragon 1) capsule expected to launch was likely shipped to Florida earlier this month. (SpaceX)

As of late, multi-day hardware-related launch delays have been rather rare for SpaceX, who has instead suffered numerous weather-related scrubs over the course of completing its Fall 2019 and Winter 2020 launch manifest. SpaceX’s February 17th Starlink-4 mission did suffer a minor second stage valve-related delay that was fixed in about 24 hours, but things have otherwise been quite smooth for Falcon 9.

Given all that goes into building and testing Falcon 9 second stages, there are very few good explanations (aside from pure luck) that would allow for a given SpaceX launch to entirely replace its assigned second stage a week before liftoff and only slip a handful of days. Nevertheless, with CRS-20, SpaceX is attempting to do exactly that.

Advertisement

“SpaceX identified a valve motor on the second stage engine behaving not as expected and determined the safest and most expedient path to launch is to utilize the next second stage in line that was already at the Cape and ready for flight. The new second stage has already completed the same preflight inspections with all hardware behaving as expected. The updated target launch date provides the time required to complete preflight integration and final checkouts.”

NASA.gov — February 25th, 2020

A Falcon 9 second stage coasting in orbit during SpaceX’s May 2019 Starlink v0.9 mission. (SpaceX)
Falcon 9 has won a contract launch what will likely be a rideshare mission - featuring the Nova C Moon lander - in July 2021. (SpaceX)
A render of a Falcon second stage’s Merlin Vacuum (MVac) engine burning towards orbit as its payload fairing is jettisoned. (SpaceX)

The specific lead times SpaceX’s Falcon rocket family parts require is almost totally unknown but it’s safe to say that the process of building a Falcon upper stage from scratch, performing acceptance testing in Texas, and shipping said stage to the launch pad takes months from start to finish. For SpaceX to be able to attempt to minimize CRS-20’s delays to just four days while still fully swapping out its upper stage, the company would have quite literally had to have had another Falcon stage just sitting around in Florida.

As it turns out, per NASA’s official statement, that is precisely what transpired. A separate second stage was already in Florida and “ready for flight”, giving SpaceX the luxury of selecting the safest option theoretically available. Beyond the hardware already being ready to go in Florida, the stage reassignment almost certainly also hinged upon the mission it was assigned to being somewhat nonessential – a label that SpaceX would be hard-pressed to affix to any of its customers’ launches. An internal Starlink mission, however, would be a perfect opportunity, allowing SpaceX to avoid both picking favorites and seriously impacting (aside from the ~4-day CRS-20 delay) its paying customers.

Pictured landing in July 2019 after its second launch, Falcon 9 booster B1056 - now on its fourth launch - is set to break a crucial reusability record. (SpaceX)
Falcon 9 booster B1059.2 is expected to attempt SpaceX’s first land landing zone recovery of 2020 after launching CRS-20. (SpaceX)

To be clear, SpaceX was thus able to swap out CRS-20’s upper stage at the last second with only a minor schedule impact almost exclusively because of it’s ambitious plans for 20-24 Starlink launches this year. If the company wasn’t pursuing a more than biweekly 2020 launch cadence, it’s much more likely that CRS-20 would have had to make do with its second stage or wait for a new one to be built, potentially delaying the launch by one or two weeks, if not longer.

In simple terms, the launch cadence SpaceX is targeting (and needs) for its Starlink constellation is already exhibiting signs of a future where its high-performance orbital-class rockets have been almost entirely commodified.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla might be doing away with a long-included feature with its vehicles

It appears Tesla is mulling the possibility of not including key cards with its vehicles any longer.

Published

on

Credit: Tesla

Tesla might be doing away with a long-included feature with its vehicles, as it could be looking to phase out something that very few owners utilize.

Tesla Key Cards are included when you purchase your vehicle, and they assist in the initial setup process. However, after that, they are not super useful or relevant to the owner, as many rely on their Phone Key through the Tesla App to access their cars.

As such, it appears Tesla is mulling the possibility of not including key cards with its vehicles any longer. According to some language that has been removed from vehicle Owner’s Manuals that talks about the inclusion of key cards with the car upon delivery:

“Tesla provides you with two Model 3/Y key cards, designed to fit in your wallet.”

That sentence was removed from Owner’s Manuals, according to Not a Tesla App, which first spotted the change.

Tesla Model 3 owner implants RFID key card chip into her arm as ultimate hack to unlock door

Interestingly, the timing of the phrase being removed from Owner’s Manuals comes just after Tesla launched its “affordable” Standard Models, and could be a small money-saving measure for the company.

Key Cards have been utilized by Tesla for its cars since 2017, as they became an included accessory with the vehicle. They still have their place and are useful for other applications, such as Valet service and even to be used by car owners if their phone is dead or if someone else needs to get into the car.

They can also be purchased in the Tesla Shop for $40.

It seems as if Tesla is planning to have owners be completely reliant on the Phone Key, which is more useful and convenient than carrying around the Key Cards.

Although it is minor, it is yet another strategy Tesla is using to trim any sort of costs that can be eliminated and could save money in the long run.

Continue Reading

News

Elon Musk confirms Tesla FSD V14.2 will see widespread rollout

Musk shared the news in a post on social media platform X.

Published

on

Credit: Whole Mars Catalog/X

Elon Musk has confirmed that Tesla will be implementing a wide rollout of Full Self-Driving (FSD) V14 with the system’s V14.2 update. Musk shared the news in a post on social media platform X. 

FSD V14.1.2 earns strong praise from testers

Musk’s comment came as a response to Tesla owner and longtime FSD tester AI DRIVR, who noted that it might be time to release Full Self-Driving to the fleet because V14.1.2 has already become very refined.

“95% of the indecisive lane changes and braking have been fixed in FSD 14.1.2. I haven’t touched my steering wheel in two days. I think it’s time, Tesla AI,” the longtime FSD tester wrote

AI DRIVR’s comment received quite a bit of support from fellow Tesla drivers, some of whom noted that the improvements that were implemented in V14.1.2 are substantial. Others also agreed that it’s time for FSD to see a wide release.

In his reply to the FSD tester, CEO Elon Musk noted that FSD V14’s wide release would happen with V14.2. “14.2 for widespread use,” Musk wrote in his reply

Advertisement

Mad Max mode makes headlines

One of the key features that was introduced with FSD’s current iteration is Mad Max mode, which allows for higher speeds and more frequent lane changes than the previous “Hurry” mode. Videos and social media posts from FSD testers have shown the system deftly handling complex traffic, merging seamlessly, and maintaining an assertive but safe driving behavior with Mad Max mode engaged.

Tesla AI head Ashok Elluswamy recently noted in a post on X that Mad Max mode was built to handle congested daytime traffic, making it extremely useful for drivers who tend to find themselves in heavy roads during their daily commutes. With Musk now hinting that FSD V14.2 will go on wide release, it might only be a matter of time before the larger Tesla fleet gets to experience the notable improvements of FSD’s V14 update.

Continue Reading

News

Multiple Tesla Cybercab units spotted at Giga Texas crash test facility

The vehicles were covered, but one could easily recognize the Cybercab’s sleek lines and compact size.

Published

on

Credit: @JoeTegtmeyer/X

It appears that Tesla is ramping up its activities surrounding the development and likely initial production of the Cybercab at Giga Texas. This was, at least, hinted at in a recent drone flyover of the massive electric vehicle production facility in Austin. 

Cybercab sightings fuel speculations

As observed by longtime Giga Texas drone operator Joe Tegtmeyer, Tesla had several covered Cybercab units outside the facility’s crash testing facility at the time of his recent flyover. The vehicles were covered, but one could easily recognize the Cybercab’s sleek lines and compact size. Tegtmeyer also observed during his flyover that production of the Model Y Standard seems to be hitting its pace.

The drone operator noted that the seven covered Cybercabs might be older prototypes being decommissioned or new units awaiting crash tests. Either scenario points to a ramp-up in Cybercab activity at Giga Texas, however. “In either case, this is another datapoint indicating production is getting closer to happening,” Tegtmeyer wrote on X, highlighting that the autonomous two-seaters were quite exciting to see.

Cybercab production targets

This latest sighting follows reports of renewed Cybercab appearances at both the Fremont Factory and Giga Texas. A test unit was recently spotted driving on Giga Texas’ South River Road. Another Cybercab, seen at Tesla’s Fremont Factory, appeared to be manually driven, suggesting that the vehicle’s current prototypes may still be produced with temporary steering controls.

The Tesla Cybercab is designed to be the company’s highest-volume vehicle, with CEO Elon Musk estimating that the autonomous two-seater should see an annual production rate of about 2 million units per year. To accomplish this, Tesla will be building the Cybercab using its “Unboxed” process, which should help the vehicle’s production line achieve outputs that are more akin to consumer electronics production lines.

Advertisement
Continue Reading

Trending