News
SpaceX VP says Starlink is almost ready to revolutionize in-flight internet
Speaking on a panel at an aviation conference, a senior SpaceX sales executive says that the company is in talks with “several…airlines” to provide in-flight internet to passengers with its Starlink satellite constellation.
Unlike all current in-flight connectivity (IFC) providers, which rely on a handful of satellites in geostationary orbits ~36,000 km (~22,500 mi) above the Earth, SpaceX’s Starlink constellation is currently made up of ~1600 spacecraft just 550 km (340 mi) up – known as low Earth orbit (LEO). Aside from guaranteeing that any uncontrolled spacecraft or debris reenter in just a few years instead of millennia, Starlink’s home in LEO also means that the network can offer far superior latency (also known as ping).
Being more than 50 times closer to the Earth’s surface also makes it much easier for SpaceX to deliver far more bandwidth to a single vehicle. In simple terms, once the Starlink network is decently reliable and its aviation-optimized ‘conformal’ antennas have been refined, qualified, and certified by the FCC and FAA, conditions could quickly become very uncomfortable for incumbents like Gogo and Viasat.
Perhaps not so coincidentally, Gogo’s stock price dropped more than 11% after The Verge’s Joey Roulette first reported on SpaceX’s IFC comments. Closing in on annual revenue close to $1B before the coronavirus pandemic took a sledgehammer to commercial airline travel, Gogo has dominated the western in-flight internet market for about as long as it’s existed. Unfortunately, COVID-19 has not been kind to the IFC industry and Gogo sold off its in-flight internet business to Intelsat – ironically in the midst of bankruptcy proceedings – in late 2020.
For the handful of ailing IFC providers responsible for most in-flight internet services, the arrival of a new competitor – let alone one as promising as Starlink – could scarcely be less welcome. Starlink competitor OneWeb also plans to offer IFC services as early as mid-2022 but the company has been so slow to deploy its already small ~650-satellite constellation that it’s unclear when it will actually be ready to support a significant presence in satellite internet markets.
Starlink, on the other hand, already has more than a thousand operational satellites in orbit, tens of thousands of fixed beta customers actively using the network, and multiple demonstrations of in-flight operations already complete. Notably, while testing just 60 Starlink v0.9 satellite prototypes, SpaceX successfully delivered bandwidth of more than 600 Mbps to a single military aircraft in flight. In comparison, the most cutting-edge Gogo terminal currently promises “speeds of 70+ Mbps” – an order of magnitude less bandwidth saddled with massive latency constraints.
With Starlink’s performance, hundreds of passengers on a single plane could simultaneously stream videos, whereas modern IFC almost invariably prevents even a single paying passenger from streaming video of any kind. Additionally, thanks to the network’s far lower latency, aircraft with Starlink WiFi could feasibly allow passengers to teleconference, make video calls, and even play latency-sensitive multiplayer games while in flight (though whether passengers should be allowed to do so is, of course, a different story).
It remains to be seen when SpaceX might be ready (and certified) to begin connecting commercial airlines to its Starlink network. However, the company has been working on “aeronautical terminals” for more than 16 months and has the distinct benefit of controlling all aspects of its vertically integrated constellation – which is to say that Starlink could be ready for IFC markets far sooner than later.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.