Connect with us

News

SpaceX Starlink a step closer to internet service and Elon Musk has beta test details

SpaceX became the most prolific US launch provider in operation when it successfully launched its seventh Starlink mission on April 22nd and internet service could reportedly be just three months away. (Richard Angle)

Published

on

SpaceX’s successful April 22nd Starlink launch has brought the nascent constellation another step closer to serving customers internet and CEO Elon Musk has revealed the first significant beta test details.

SpaceX kicked off 60-satellite Starlink launches with its revolutionary flat-pack design in May 2019, a mission that served as a beta test for the new design and launched “v0.9 spacecraft”. The company finalized the “v1.0” Starlink satellite design shortly thereafter and began its operational launch campaign in November 2019. In the five subsequent months, SpaceX has completed six Starlink v1.0 launches, placing 360 satellites in orbit for a total of 422 as of today. Of the 422 spacecraft launched, ~415 remain operational and a small handful have been deorbited in the last few months.

The ultimate purpose of Starlink, of course, is to serve high-quality internet to customers anywhere on Earth, ranging from the deep winter Arctic to the middle of the Australian outback – places that are fundamentally underserved. Eventually, SpaceX may seek to open service to other less challenged locations and the extraordinarily ambitious final constellation – ~40,000 satellites strong – could easily serve the needs of tens or hundreds of millions, but the initial targets will, in SpaceX’s own words, be places where internet is “unreliable, expensive, or completely unavailable.” Finally, thanks to CEO Elon Musk, we have a more specific idea of when customers could begin using the Starlink constellation.

Completed on April 22nd, SpaceX’s seventh Starlink launch brings the company one step closer to serving customers high-quality internet. (Richard Angle)

According to Musk, SpaceX could begin beta-testing its burgeoning Starlink satellite constellation as few as three months from now, potentially kicking off a “private beta” at some point in Q3 2020. “Private” means that it will almost certainly be reserved for SpaceX and Tesla employees and their families. Just like Tesla currently trials early software builds on employee cars, those customers would serve as much more regimented guinea pigs, likely offering detailed feedback throughout their trial of Starlink internet.

SpaceX has a lot of work to do along those lines. Aside from the quality, reliability, and usability of the network itself (can it stream YouTube/Netflix videos? Game? Teleconference?), the same aspects of the user terminal customers will need to access said network will also be under the microscope. If SpaceX is unable to mass-produce millions of high-quality, reliable user terminals and ensure that they are easy and intuitive to use, the quality of the Starlink satellite network itself would be effectively irrelevant.

Advertisement
SpaceX deployed its 422nd Starlink satellite on April 22nd, meaning that the constellation is already either 10% or 1% complete depending on where the finish line is set. (SpaceX)

The problem is familiar for users of ISPs (i.e. a majority of humans): your WiFi router and modem can be top-of-the-line but bad internet service makes the quality of your home network irrelevant. Vice-versa, a bad router/modem also makes high-quality internet service effectively irrelevant. In other words, SpaceX fundamentally needs to ensure that neither component becomes a bottleneck for performance or user experience.

Hence starting with a private beta test. New consumer devices and services – let alone something as ambitious, complex, and new as Starlink – will almost invariably have many, many bugs in the early stages of functionality. To the average consumer, internet is simply a commodity that they expect to “just work” in most cases, so that average customer simply isn’t fit to judge or constructively criticize an early prototype.

(Richard Angle)
SpaceX’s 84th successful Falcon 9 launch has placed the company 60 satellites closer to initial Starlink constellation operability – expected around 600-700 satellites. Starlink is now ~415 satellites strong. (Richard Angle)

Once a majority of the most disruptive bugs and kinks have been worked out, though, SpaceX can begin what Musk described as a “public beta” as few as six months from now – Q4 2020. A public beta would most likely involve interested customers in the right geographic locations applying online and getting on a waitlist.

For now, it’s unknown how many testers those private and public betas will require. More likely than not, the private round will include around 1000-10,000 individuals, while it would be unusual if the public beta didn’t involve at least 10,000+ testers. There’s also a good chance that the public beta will gradually turn into full constellation operations, meaning that anyone (within reason) who wants Starlink internet would be able to join the network fairly quickly. Stay tuned for updates as SpaceX – launch by launch – gets ever closer to the goal of delivering customers internet from space.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Published

on

Credit: @AdanGuajardo/X

Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater. 

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Two-seat Cybercabs make perfect sense

During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab. 

“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said. 

Advertisement

Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.

“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said. 

Tesla’s robotaxi lineup is already here

The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.

The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.

Advertisement

Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.

Continue Reading

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading