

News
SpaceX Starlink a step closer to internet service and Elon Musk has beta test details
SpaceX’s successful April 22nd Starlink launch has brought the nascent constellation another step closer to serving customers internet and CEO Elon Musk has revealed the first significant beta test details.
SpaceX kicked off 60-satellite Starlink launches with its revolutionary flat-pack design in May 2019, a mission that served as a beta test for the new design and launched “v0.9 spacecraft”. The company finalized the “v1.0” Starlink satellite design shortly thereafter and began its operational launch campaign in November 2019. In the five subsequent months, SpaceX has completed six Starlink v1.0 launches, placing 360 satellites in orbit for a total of 422 as of today. Of the 422 spacecraft launched, ~415 remain operational and a small handful have been deorbited in the last few months.
The ultimate purpose of Starlink, of course, is to serve high-quality internet to customers anywhere on Earth, ranging from the deep winter Arctic to the middle of the Australian outback – places that are fundamentally underserved. Eventually, SpaceX may seek to open service to other less challenged locations and the extraordinarily ambitious final constellation – ~40,000 satellites strong – could easily serve the needs of tens or hundreds of millions, but the initial targets will, in SpaceX’s own words, be places where internet is “unreliable, expensive, or completely unavailable.” Finally, thanks to CEO Elon Musk, we have a more specific idea of when customers could begin using the Starlink constellation.
According to Musk, SpaceX could begin beta-testing its burgeoning Starlink satellite constellation as few as three months from now, potentially kicking off a “private beta” at some point in Q3 2020. “Private” means that it will almost certainly be reserved for SpaceX and Tesla employees and their families. Just like Tesla currently trials early software builds on employee cars, those customers would serve as much more regimented guinea pigs, likely offering detailed feedback throughout their trial of Starlink internet.
SpaceX has a lot of work to do along those lines. Aside from the quality, reliability, and usability of the network itself (can it stream YouTube/Netflix videos? Game? Teleconference?), the same aspects of the user terminal customers will need to access said network will also be under the microscope. If SpaceX is unable to mass-produce millions of high-quality, reliable user terminals and ensure that they are easy and intuitive to use, the quality of the Starlink satellite network itself would be effectively irrelevant.
The problem is familiar for users of ISPs (i.e. a majority of humans): your WiFi router and modem can be top-of-the-line but bad internet service makes the quality of your home network irrelevant. Vice-versa, a bad router/modem also makes high-quality internet service effectively irrelevant. In other words, SpaceX fundamentally needs to ensure that neither component becomes a bottleneck for performance or user experience.
Hence starting with a private beta test. New consumer devices and services – let alone something as ambitious, complex, and new as Starlink – will almost invariably have many, many bugs in the early stages of functionality. To the average consumer, internet is simply a commodity that they expect to “just work” in most cases, so that average customer simply isn’t fit to judge or constructively criticize an early prototype.


Once a majority of the most disruptive bugs and kinks have been worked out, though, SpaceX can begin what Musk described as a “public beta” as few as six months from now – Q4 2020. A public beta would most likely involve interested customers in the right geographic locations applying online and getting on a waitlist.
For now, it’s unknown how many testers those private and public betas will require. More likely than not, the private round will include around 1000-10,000 individuals, while it would be unusual if the public beta didn’t involve at least 10,000+ testers. There’s also a good chance that the public beta will gradually turn into full constellation operations, meaning that anyone (within reason) who wants Starlink internet would be able to join the network fairly quickly. Stay tuned for updates as SpaceX – launch by launch – gets ever closer to the goal of delivering customers internet from space.
News
Elon Musk calls out viral claim of 10,000 Tesla Optimus deal: “Fake”
For now at least, Tesla seems determined to focus on the development of Optimus V3.

Elon Musk has provided some clarification to recent reports suggesting that PharmAGRI, a US pharmaceutical and agricultural infrastructure company, is looking to deploy 10,000 Optimus robots for its operations.
Musk posted his clarification on social media platform X.
Alleged Optimus purchase
Recently, reports emerged stating that PharmAGRI Capital Partners will be tapping into Tesla’s humanoid robots for its operations. The firm claimed that it had executed a Letter of Intent with Tesla to deploy up to 10,000 Optimus Gen 3+ humanoid robots across its SuperPharm and CEA facilities. This should allow the company to automate its labor and ensure diversion control.
A comment from Lynn Stockwell, Chairwoman & CEO, suggested that the company really was partnering with Tesla. “With Tesla robotics powering our facilities and DEA-licensed infrastructure in place, we can scale with precision, meet federal sourcing mandates, and deliver therapies that are compliant, secure, and American-made,” she said.
Elon Musk clariies
News of PharmAGRI’s Optimus claims quickly spread on social media, though some Tesla watchers argued that it seemed unlikely that the EV maker will commit two legions of Optimus robots to a rather unknown company this early. Some pointed out that Tesla typically commits to high-profile customers to test its early products, such as PepsiCo with the Tesla Semi.
Photos from PharmAGRI’s website depicting Tesla Optimus bots, as well as the rather basic look of the website itself, also brought more reservations to the company’s claims. Ultimately, Elon Musk weighed in on the matter, responding to a post about PharmAGRI’s Optimus-filled webpage. Musk was quick and direct, simply stating, “Fake.”
Elon Musk’s comments were quite unsurprising considering that Optimus is still very much in active development, and thus, it is quite unlikely that the company is already taking orders or even Letters of Intent from potential customers at this time. For now at least, Tesla seems determined to focus on the development of Optimus V3, which Musk has noted will be “sublime.”
Elon Musk
Elon Musk: Self-sustaining city on Mars is plausible in 25-30 years
Musk noted that true self-sufficiency requires Mars to develop “all the ingredients of civilization.”

Elon Musk has stated that a self-sustaining human settlement on Mars could be established in 25-30 years, provided launch capacity increases dramatically in the coming decades.
Speaking at the All-In Summit, the SpaceX CEO said building a self-sufficient colony depends on exponential growth in “tonnage to Mars” with each launch window, highlighting Starship’s role as the company’s pathway to interplanetary initiatives.
Mars settlement goals
Musk noted that true self-sufficiency requires Mars to develop “all the ingredients of civilization,” from food production to microchip manufacturing. Starship Version 3 is expected to support the first uncrewed Mars test flights, while future iterations could reach 466 feet in height and deliver larger payloads critical for settlement. Ultimately, Musk stated that an aggressive timeline for a city on Mars could be as short as 30 years, as noted in a Space.com report.
“I think it can be done in 30 years, provided there’s an exponential increase in the tonnage to Mars with each successive Mars transfer window, which is every two years. Every two years, the planets align and you can transfer to Mars.
“I think in roughly 15, but maybe as few as 10, but 10-15-ish Mars transfer windows. If you’re seeing exponential increases in the tonnage to Mars with each Mars transfer window, then it should be possible to make Mars self-sustaining in about call it roughly 25 years,” Musk said.
Starship’s role
Starship has flown in a fully stacked configuration ten times, most recently in August when it completed its first payload deployment in orbit. The next flight will close out the Version 2 program before transitioning to Starship Version 3, featuring Raptor 3 engines and a redesigned structure capable of lifting over 100 tons to orbit.
While SpaceX has demonstrated Super Heavy booster reuse, Ship reusability remains in development. Musk noted that the heat shield is still the biggest technical hurdle, as no orbital vehicle has yet achieved rapid, full reuse.
“For full reusability of the Ship, there’s still a lot of work that remains on the heat shield. No one’s ever made a fully reusable orbital heat shield. The shuttle heat shield had to go through nine months of repair after every flight,” he said.
News
Tesla Model Y may gain an extra 90 miles of range with Panasonic’s next-gen battery
The Japanese company is pursuing an anode-free design.

Panasonic is developing a new high-capacity EV battery that could potentially extend the range of a Tesla Model Y by 90 miles.
The Japanese company, one of Tesla’s key battery suppliers, is pursuing an anode-free design that it says could deliver a “world-leading” level of capacity by the end of 2027.
Panasonic’s anode-free design
The technology Panasonic is pursuing would eliminate the anode during the manufacturing process, as noted in a Reuters report. By freeing up space for more active cathode materials such as nickel, cobalt, and aluminum, the Japanese company expects a 25% increase in capacity without expanding battery size.
That could allow Tesla’s Model Y to gain an estimated 145 kilometers (90 miles) of additional range if equipped with a battery that matches its current pack’s size. At the same time, Panasonic could use smaller, lighter batteries to achieve the Model Y’s current range.
Panasonic also aims to reduce reliance on nickel, which remains one of the more costly raw materials. A senior executive previewed the initiative to reporters ahead of a scheduled presentation by Panasonic Energy’s technology chief, Shoichiro Watanabe.
Tesla implications
The breakthrough, if achieved, could strengthen Panasonic’s position as Tesla’s longest-standing battery partner at a time when the automaker is preparing to enter an era of extreme scale driven by high-volume products like the Cybercab and Optimus.
Elon Musk has stated that products like Optimus would be manufactured at very high scale, so it would likely be an all-hands-on-deck situation for the company’s suppliers.
Panasonic did not share details on production costs or how quickly the new batteries might scale for commercial applications. That being said, the Japanese supplier has long been a partner of Tesla, so it makes sense for the company to also push for the next generation of battery innovation while the EV maker pursues even more lofty ambitions.
-
Elon Musk2 weeks ago
Tesla’s next-gen Optimus prototype with Grok revealed
-
News2 weeks ago
Tesla launches new Supercharger program that business owners will love
-
Elon Musk2 weeks ago
Tesla Board takes firm stance on Elon Musk’s political involvement in pay package proxy
-
News2 weeks ago
Tesla deploys Unsupervised FSD in Europe for the first time—with a twist
-
News2 weeks ago
Tesla explains why Robotaxis now have safety monitors in the driver’s seat
-
News2 weeks ago
Tesla is already giving Robotaxi privileges hours after opening public app
-
Elon Musk2 weeks ago
Elon Musk says Tesla will take Safety Drivers out of Robotaxi: here’s when
-
Elon Musk2 weeks ago
Elon Musk is setting high expectations for Tesla AI5 and AI6 chips