News
SpaceX wins FCC approval to launch first polar Starlink satellites amidst rideshare chaos
In a sign of the regulatory agency’s growing confidence in SpaceX, the FCC has rapidly approved a request to add ten Starlink satellites to an imminent Falcon 9 rideshare launch.
Known as Transporter-1 and originally scheduled to launch as early as December 2020 or January 14th, SpaceX delayed its first dedicated Smallsat Program mission to January 21st for unknown reasons last week. While there is no confirmed cause, any one of several recent events could have easily contributed to or fully caused the delay. In a rare ground processing failure, DARPA (Defense Advanced Research Projects Agency) revealed that two “risk reduction” technology demonstrator satellites were damaged on January 4th when their deployment mechanism was accidentally triggered during processing.
In other words, the two spacecraft may have been shot out of their dispensers by their spring-loaded deployment mechanisms, falling onto a processing bench or even off of the much taller payload stack. Meanwhile, on the very same day, space tug startup Momentus Space announced that it was removing its first Vigoride tug from Transporter-1 “for additional time…to secure FAA approval of…payloads.” Finally, once more on January 4th, SpaceX filed a request with the FCC to manifest and launch its first polar Starlink satellites to better take advantage of Transporter-1’s full capacity.
If launched, the ten spacecraft would be the first of several hundred planned polar Starlink satellites necessary for SpaceX’s massive internet constellation to serve some of the most remote communities on Earth. Referring to an orbit centered more around Earth’s north and south poles than its equator, the polar Starlink launch opportunity is available because SpaceX’s Transporter-1 mission – set to carry several dozen small satellites – is headed for a nearly polar “sun-synchronous orbit” (SSO).
For Starlink, sun-synchronous and polar orbit satellites will allow the constellation to serve customers and communities in high northern latitudes – possibly up to and including the Arctic and Antarctic once fully deployed.

SpaceX supported the US East Coast’s first polar launch in more than half a century in August 2020, effectively opening the same polar corridor that’s now allowing the company to launch Transporter-1 – and polar Starlink satellites – from the same pads it launches almost every other mission. It remains to be seen if SpaceX will one day perform dedicated polar Starlink launches from its West Coast launch pad – reactivated in November 2020 after spending almost a year and a half mothballed.
Perhaps the most impressive aspect of Starlink’s imminent polar launch debut is just how quickly both SpaceX and the FCC acted to make it happen. When SpaceX requested permission on January 4th, then just 10 days from the launch date, the historical odds of the FCC responding at all – let alone approving the request – in time were practically zero. Instead, the agency got back to SpaceX with a lengthy conditional approval (PDF) four days later. Although the FCC has yet to approve a request to move almost all of SpaceX’s 4,408 Phase 1 Starlink satellites to much lower orbits, the agency was apparently chomping at the bit to allow a limited trial at those lower orbits.
Dropped from an orbital altitude of ~1200 km (~750 mi) to 560 km (~350 mi), the ten Starlink satellites SpaceX now has permission to launch on Transporter-1 likely represent less than 20% of one polar ‘plane’ of Starlink satellites. In simpler terms, those ten satellites will only be capable of supporting a very limited test of polar Starlink internet, likely resulting in intermittent, unreliable coverage that won’t be viable for civil use until the FCC permits SpaceX to launch one or several full planes. Still, receiving approval to launch any number of satellites mere days after filing a request suggests that full FCC approval is a now question of “when,” not “if.”
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
