Connect with us

News

SpaceX Starlink ‘space lasers’ successfully tested in orbit for the first time

SpaceX has revealed the first successful test of Starlink satellite 'space lasers' in orbit, paving the way towards an even more powerful constellation. (SpaceX/Teslarati)

Published

on

SpaceX has revealed the first successful test of Starlink satellite ‘space lasers’ in orbit, a significant step along the path to an upgraded “Version 2” constellation.

In simple terms, those “lasers” are a form of optical (light-based) communication with an extremely high bandwidth ceiling, potentially permitting the wireless, high-speed transfer of vast quantities of data over equally vast distances. Of the ~715 Starlink satellites SpaceX has launched over the last 16 months, some 650 are operational Version 1 (v1.0) spacecraft designed to serve a limited group of customers in the early stages of the constellation. Prior to SpaceX’s September 3rd announcement, it was assumed that none of those satellites included laser interlinks, but now we know that two spacecraft – presumably launched as part of Starlink-9 or -10 in August – have successfully tested prototype lasers in orbit.

Ever since CEO Elon Musk first revealed SpaceX’s satellite internet ambitions in early 2015, those plans have included some form of interconnection between some or all of the thousands of satellites the company would need to launch. While a functional low Earth orbit (LEO) satellite internet constellation doesn’t intrinsically need to have that capability to function or be successful, inter-satellite links offer some major benefits in return for the added spacecraft complexity and cost.

The single biggest draw of laser interlinks is arguably the major reduction in connection latency (ping) they can enable compared to a similar network without it. By moving a great deal of the work of networking into orbit, the data transported on an interlinked satellite network would theoretically require much less routing to reach an end-user, physically shortening the distance that data has to travel. The speed of light (300,000 kilometers per second) may be immense but even on the small scale of the planet Earth, with the added inefficiencies inherent in even the best fiber optic cables, routing data to and from opposite ends of the planet can still be slowed down by high latency.

Without interlinks, Starlink and internet constellations like it function by acting more like a go-between for individual users and fixed ground stations that then connect those users to the rest of the Internet. Under that regime, the performance of constellations is inherently filtered through the Earth’s existing internet infrastructure and is necessitates the installation of ground stations relatively close to network users. If a satellite without interlinks can ‘see’ (and thus communicate with) customers but can’t ‘see’ a ground station from the same orbital vantage point, it is physically incapable of connecting those communications with the rest of the internet.

Advertisement

This isn’t a showstopper. As SpaceX’s very early Starlink constellation has already demonstrated through beta testers, the network is already capable of serving individual users 100 megabits per second (Mbps) of bandwidth with latency roughly comparable to average wired connections. The result: internet service that is largely the same as (if not slightly worse and less convenient than) existing fiber options. To fully realize a LEO internet constellation’s potential of being much better than fiber, high-performance laser interlinks are thus a necessity.

60 Starlink v1.0 satellites prepare for flight. (SpaceX)

With laser interlinks, the aforementioned connection dropout scenario would be close to impossible. In the event that an active satellite finds itself serving customers without a ground station in reach, it would route those forlorn data packages by laser to a different satellite with immediate ground station access. One step better, with enough optimization, user communications can be routed by laser to and from the ground stations physically closest to the user and their traffic destination. With a free-floating network of satellites communication in vacuum along straight lines, nothing short of a direct, straight fiber line could compete with the resulting latency and routing efficiency.

Interlinks offer one last significant benefit: by sacrificing latency, an interlinked network will be able to service a larger geographic area by allowing the connections of users far from ground stations to be routed through other satellites to the nearest ground station. Large-scale ground station installation and the international maze of permitting it requires can take an inordinate amount of time and resources for nascent satellite communications constellations

SpaceX’s fully-interlinked Starlink Version 2 constellation is targeting latency as low as 8 milliseconds and hopes to raise the bandwidth limit of individual connections to a gigabit or more. As soon as a viable Starlink v2.0 satellite design has been finalized and tested in orbit, SpaceX will likely end v1.0 production and launches, entering the second phase of iteration after the v0.9 to v1.0 jump.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla preps for a Cybercab takeover of the Robotaxi platform after pilot program

Tesla looks to be preparing the Cybercab for Robotaxi operation as castings pile up at Gigafactory Texas.

Published

on

(Credit: Teslarati)

Tesla is evidently preparing for the Cybercab to take over the Robotaxi platform after the pilot program in Austin, Texas, is launched.

That claim is made based on new drone footage from Gigafactory Texas captured by Joe Tegtmeyer, who found hundreds of Cybercab castings that have accumulated on property in Austin.

The Cybercab is Tesla’s dedicated Robotaxi vehicle that was unveiled last October. It features just two seats and is minimalistic, aimed toward allowing the Full Self-Driving suite to chauffeur passengers from Point A to Point B without ever having to deal with human interaction or any responsibilities within the vehicle.

In June, Tesla plans to launch its first Robotaxi rides in Texas. Although employees in Austin and in the Bay Area of San Francisco have already had access to over 1,500 trips and 15,000 miles of autonomous (but supervised) travel, Tesla plans to launch a driverless version in a limited fashion in June.

However, this initial pilot program, while presumably operating on an Unsupervised version of the FSD, will only utilize Model Ys, at least at first.

The drone footage captured by Tegtmeyer today seems to tell a story of a quick transition to the Cybercab for the Robotaxi responsibilities, especially as Tesla gets its feet wet with the early Unsupervised FSD rides and gains confidence in the fleet’s ability to navigate passengers:

It appears that between 400 and 500 Cybercab castings can be seen in the images Joe captured, a very respectable number considering the company said it will not launch the Robotaxi with the initial rides it gives in Austin.

The images seem to paint a picture that Tesla is truly ready to get things moving in terms of the Cybercab project. While it does not plan to use the vehicle initially, its manufacturing efforts for the car are being prepared by stacking these castings so they’re ready to be expanded upon into the real thing.

On the most recent Earnings Call, Tesla’s VP of Vehicle Engineering, Lars Moravy, said the Cybercab’s engineering has progressed over the last several months to “derisk things like corrosion, the ceiling across the seams of the vehicle, and when you marry several components,” and even things like early crash testing have already taken place.

Moravy continued, “As with all that combined, we kind of go into the builds that we have in this quarter for the Cybercab product, and that’s the next real big test of full-scale integration with the unboxed process. And that’s kind of where we are. So you’ll see them on the test roads in a couple of months.”

Continue Reading

Lifestyle

Tesla Semi futuristic sci-fi acceleration sound will never get old

Videos that capture the Semi moving at speed are most notable due to their sheer cool factor.

Published

on

Credit: Tesla Owners Silicon Valley/X

The Tesla Semi is not yet in mass production, but the company has accumulated over 7.9 million miles across its test fleet. With Tesla using the Semi for its operations, it is no surprise that sightings of the Class 8 all-electric truck have been abounding. 

These sightings from Tesla enthusiasts vary, but those that capture the the Class 8 all-electric truck moving at speed are most notable, possibly due to their sheer cool factor.

Tesla Semi’s Roar

There is something that just stands out with the Semi, particularly on the road. While the Semi does not have the Cybertruck’s brutalist, angular design, it is still very striking because it’s such a massive machine that moves far too quietly for its size. This is, of course, one of the reasons why the vehicle also becomes extra noteworthy when it fires up its electric motors and accelerates.

Take this video from Tesla Owners Silicon Valley, for example, which shows the all-electric hauler accelerating while pulling what appears to be a full load. In these situations, the Tesla Semi actually becomes audible, but unlike traditional diesel-powered truck, the Class 8 all-electric truck “roars” with its own, unique futuristic, sci-fi sound. In such situations, one could feel the Semi’s raw power, which comes from its three independent motors on its rear axles.

Tesla Semi Ramp

Tesla has been promoting the Semi quite a bit as of late, and recent reports have suggested that the company is putting in a lot of effort to prepare the vehicle for its production in Nevada. Tesla’s Careers website has gone live with over 80 Semi-related job openings recently as well, and a recent report has suggested that Tesla has ramped the Semi’s factory workers in Nevada to over 1,000 employees.

Advertisement

The company has even shared an update video of the Semi factory’s progress near Giga Nevada, as well as the design of the vehicle’s new logo. The Semi’s updated logo is quite interesting as it features elements from the Tesla Model 3’s first logo, which was unveiled way back in 2016.

Continue Reading

News

Robots like Tesla Optimus are a $5 trillion opportunity: analyst

This massive opportunity could be tapped by Tesla, thanks to its Optimus humanoid robot.

Published

on

tesla-optimus-pilot-production-line-fremont-factory
Credit: Tesla

Morgan Stanley analysts have estimated that the humanoid robot market could offer a $5 trillion opportunity by the middle of the century. This massive opportunity could be tapped by Tesla, thanks to its Optimus humanoid robot.

The analysts, however, noted that the humanoid robots will likely be mostly used in industrial and commercial deployments.

The Estimates

Estimates from Morgan Stanley analysts point to humanoid robots hitting $5 trillion in global revenue by 2050. This, the analysts noted, would be about double the total revenue of the 20 largest automakers in 2024. In 2050, Morgan Stanley analysts estimated that there might be about 1 billion humanoid robots deployed.

As noted in a report from Investing.com, the shift to humanoid robots would be gradual. By 2035, the analysts estimated that just about 13 million humanoid robots will be in use, most of which will be used in industrial and commercial settings. Even in 2050, when the analysts estimated that 1 billion humanoid robots will be in use, an estimated 90% might still be used in industrial and commercial settings.

The advent of humanoid robots will likely be felt in the labor sector, Morgan Stanley analysts noted. By 2030, the analysts noted that humanoid robots could replace about 40,000 jobs. Just ten years later, in 2040, the number of jobs that robots could take over could balloon to 8.4 million. By 2050, the analysts noted that 62.7 million humans may end up watching humanoid robots do their jobs.

Advertisement

Tesla Potential

Morgan Stanley noted that companies like Tesla, which control the “brains, bodies, branding and ecosystems” of the humanoid robots, would be able to offer the highest value. This is good news for Tesla’s Optimus program, as it is a product that is designed to be produced at an extreme scale. During the Q1 2025 All Hands meeting, Elon Musk reiterated the idea that Optimus could very well become the biggest product of all time.

Most importantly, Musk also stated that Tesla is internally aiming to acquire enough resources to produce 10,000 to 12,000 Optimus robots this year. But even if Tesla just manages half of this number, or about 5,000 Optimus robots this year, it would already be impressive.

“Even 5,000 robots, that’s the size of a Roman legion, FYI, which is like a little scary thought. Like a whole legion of robots, I’ll be like ‘whoa.’ But I think we will literally build a legion, at least one legion of robots this year, and then probably 10 legions next year. I think it’s kind of a cool unit, you know? Units of legion. So probably 50,000-ish next year,” Musk stated.

Continue Reading

Trending