News
SpaceX Starlink ‘space lasers’ successfully tested in orbit for the first time
SpaceX has revealed the first successful test of Starlink satellite ‘space lasers’ in orbit, a significant step along the path to an upgraded “Version 2” constellation.
In simple terms, those “lasers” are a form of optical (light-based) communication with an extremely high bandwidth ceiling, potentially permitting the wireless, high-speed transfer of vast quantities of data over equally vast distances. Of the ~715 Starlink satellites SpaceX has launched over the last 16 months, some 650 are operational Version 1 (v1.0) spacecraft designed to serve a limited group of customers in the early stages of the constellation. Prior to SpaceX’s September 3rd announcement, it was assumed that none of those satellites included laser interlinks, but now we know that two spacecraft – presumably launched as part of Starlink-9 or -10 in August – have successfully tested prototype lasers in orbit.
Ever since CEO Elon Musk first revealed SpaceX’s satellite internet ambitions in early 2015, those plans have included some form of interconnection between some or all of the thousands of satellites the company would need to launch. While a functional low Earth orbit (LEO) satellite internet constellation doesn’t intrinsically need to have that capability to function or be successful, inter-satellite links offer some major benefits in return for the added spacecraft complexity and cost.
The single biggest draw of laser interlinks is arguably the major reduction in connection latency (ping) they can enable compared to a similar network without it. By moving a great deal of the work of networking into orbit, the data transported on an interlinked satellite network would theoretically require much less routing to reach an end-user, physically shortening the distance that data has to travel. The speed of light (300,000 kilometers per second) may be immense but even on the small scale of the planet Earth, with the added inefficiencies inherent in even the best fiber optic cables, routing data to and from opposite ends of the planet can still be slowed down by high latency.
Without interlinks, Starlink and internet constellations like it function by acting more like a go-between for individual users and fixed ground stations that then connect those users to the rest of the Internet. Under that regime, the performance of constellations is inherently filtered through the Earth’s existing internet infrastructure and is necessitates the installation of ground stations relatively close to network users. If a satellite without interlinks can ‘see’ (and thus communicate with) customers but can’t ‘see’ a ground station from the same orbital vantage point, it is physically incapable of connecting those communications with the rest of the internet.
This isn’t a showstopper. As SpaceX’s very early Starlink constellation has already demonstrated through beta testers, the network is already capable of serving individual users 100 megabits per second (Mbps) of bandwidth with latency roughly comparable to average wired connections. The result: internet service that is largely the same as (if not slightly worse and less convenient than) existing fiber options. To fully realize a LEO internet constellation’s potential of being much better than fiber, high-performance laser interlinks are thus a necessity.

With laser interlinks, the aforementioned connection dropout scenario would be close to impossible. In the event that an active satellite finds itself serving customers without a ground station in reach, it would route those forlorn data packages by laser to a different satellite with immediate ground station access. One step better, with enough optimization, user communications can be routed by laser to and from the ground stations physically closest to the user and their traffic destination. With a free-floating network of satellites communication in vacuum along straight lines, nothing short of a direct, straight fiber line could compete with the resulting latency and routing efficiency.
Interlinks offer one last significant benefit: by sacrificing latency, an interlinked network will be able to service a larger geographic area by allowing the connections of users far from ground stations to be routed through other satellites to the nearest ground station. Large-scale ground station installation and the international maze of permitting it requires can take an inordinate amount of time and resources for nascent satellite communications constellations
SpaceX’s fully-interlinked Starlink Version 2 constellation is targeting latency as low as 8 milliseconds and hopes to raise the bandwidth limit of individual connections to a gigabit or more. As soon as a viable Starlink v2.0 satellite design has been finalized and tested in orbit, SpaceX will likely end v1.0 production and launches, entering the second phase of iteration after the v0.9 to v1.0 jump.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
GM CEO Mary Barra says she told Biden to give Tesla and Musk EV credit
“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”
General Motors CEO Mary Barra said in a new interview on Wednesday that she told President Joe Biden to credit Tesla and its CEO, Elon Musk, for the widespread electric vehicle transition.
She said she told Biden this after the former President credited her and GM for leading EV efforts in the United States.
During an interview at the New York Times Dealbook Summit with Andrew Ross Sorkin, Barra said she told Biden that crediting her was essentially a mistake, and that Musk and Tesla should have been explicitly mentioned (via Business Insider):
“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”
GM CEO Mary Barra said to Andrew Sorkin at the New York Times Dealbook Summit that she pulled President Biden aside and said Tesla CEO @elonmusk deserved the credit for EVs:
“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla,'” Barra… pic.twitter.com/OHBTG1QfbJ
— TESLARATI (@Teslarati) December 3, 2025
Back in 2021, President Biden visited GM’s “Factory Zero” plant in Detroit, which was the centerpiece of the company’s massive transition to EVs. The former President went on to discuss the EV industry, and claimed that GM and Barra were the true leaders who caused the change:
“In the auto industry, Detroit is leading the world in electric vehicles. You know how critical it is? Mary, I remember talking to you way back in January about the need for America to lead in electric vehicles. I can remember your dramatic announcement that by 2035, GM would be 100% electric. You changed the whole story, Mary. You did, Mary. You electrified the entire automotive industry. I’m serious. You led, and it matters.”
People were baffled by the President’s decision to highlight GM and Barra, and not Tesla and Musk, who truly started the transition to EVs. GM, Ford, and many other companies only followed in the footsteps of Tesla after it started to take market share from them.
Elon Musk and Tesla try to save legacy automakers from Déjà vu
Musk would eventually go on to talk about Biden’s words later on:
“They have so much power over the White House that they can exclude Tesla from an EV Summit. And, in case the first thing, in case that wasn’t enough, then you have President Biden with Mary Barra at a subsequent event, congratulating Mary for having led the EV revolution.”
In Q4 2021, which was shortly after Biden’s comments, Tesla delivered 300,000 EVs. GM delivered just 26.
News
Tesla Full Self-Driving shows confident navigation in heavy snow
So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease.
Tesla Full Self-Driving is getting its first taste of Winter weather for late 2025, as snow is starting to fall all across the United States.
The suite has been vastly improved after Tesla released v14 to many owners with capable hardware, and driving performance, along with overall behavior, has really been something to admire. This is by far the best version of FSD Tesla has ever released, and although there are a handful of regressions with each subsequent release, they are usually cleared up within a week or two.
Tesla is releasing a modified version of FSD v14 for Hardware 3 owners: here’s when
However, adverse weather conditions are something that Tesla will have to confront, as heavy rain, snow, and other interesting situations are bound to occur. In order for the vehicles to be fully autonomous, they will have to go through these scenarios safely and accurately.
One big issue I’ve had, especially in heavy rain, is that the camera vision might be obstructed, which will display messages that certain features’ performance might be degraded.
So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease:
FSD 14.1.4 snow storm Ontario Canada pic.twitter.com/jwK1dLYT0w
— Everything AI (@mrteslaspace) November 17, 2025
I found the steepest, unplowed hill in my area and tested the following:
• FSD 14.2.1 on summer tires
• FSD 14.2.1 on winter tires
• Manual drivingBut I think the most impressive part was how FSD went DOWN the hill. FSD in the snow is sublime $TSLA pic.twitter.com/YMcN7Br3PU
— Dillon Loomis (@DillonLoomis) December 2, 2025
Well.. I couldn’t let the boys have all the fun!
Threw the GoPro up and decided to FSD v14.2.1 in the snow. Roads were not compacted like the other day, a little slippery, but overall doable at lower speeds. Enjoy the video and holiday music 🎶
Liked:
Took turns super slow… pic.twitter.com/rIAIeh3Zu3— 🦋Diana🦋 (@99_Colorado) December 3, 2025
Moving into the winter months, it will be very interesting to see how FSD handles even more concerning conditions, especially with black ice, freezing rain and snow mix, and other things that happen during colder conditions.
We are excited to test it ourselves, but I am waiting for heavy snowfall to make it to Pennsylvania so I can truly push it to the limit.
News
Tesla hosts Rome Mayor for first Italian FSD Supervised road demo
The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets.
Tesla definitely seems to be actively engaging European officials on FSD’s capabilities, with the company hosting Rome Mayor Roberto Gualtieri and Mobility Assessor Eugenio Patanè for a hands-on road demonstration.
The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets. This comes amid Tesla’s push for FSD’s EU regulatory approvals in the coming year.
Rome officials experience FSD Supervised
Tesla conducted the demo using a Model 3 equipped with Full Self-Driving (Supervised), tackling typical Roman traffic including complex intersections, roundabouts, pedestrian crossings and mixed users like cars, bikes and scooters.
The system showcased AI-based assisted driving, prioritizing safety while maintaining flow. FSD also handled overtakes and lane decisions, though with constant driver supervision.
Investor Andrea Stroppa detailed the event on X, noting the system’s potential to reduce severe collision risks by up to seven times compared to traditional driving, based on Tesla’s data from billions of global fleet miles. The session highlighted FSD’s role as an assistance tool in its Supervised form, not a replacement, with the driver fully responsible at all times.
Path to European rollout
Tesla has logged over 1 million kilometers of testing across 17 European countries, including Italy, to refine FSD for local conditions. The fact that Rome officials personally tested FSD Supervised bodes well for the program’s approval, as it suggests that key individuals are closely watching Tesla’s efforts and innovations.
Assessor Patanè also highlighted the administration’s interest in technologies that boost road safety and urban travel quality, viewing them as aids for both private and public transport while respecting rules.
Replies on X urged involving Italy’s Transport Ministry to speed approvals, with one user noting, “Great idea to involve the mayor! It would be necessary to involve components of the Ministry of Transport and the government as soon as possible: it’s they who can accelerate the approval of FSD in Italy.”