News
SpaceX Starlink ‘space lasers’ successfully tested in orbit for the first time
SpaceX has revealed the first successful test of Starlink satellite ‘space lasers’ in orbit, a significant step along the path to an upgraded “Version 2” constellation.
In simple terms, those “lasers” are a form of optical (light-based) communication with an extremely high bandwidth ceiling, potentially permitting the wireless, high-speed transfer of vast quantities of data over equally vast distances. Of the ~715 Starlink satellites SpaceX has launched over the last 16 months, some 650 are operational Version 1 (v1.0) spacecraft designed to serve a limited group of customers in the early stages of the constellation. Prior to SpaceX’s September 3rd announcement, it was assumed that none of those satellites included laser interlinks, but now we know that two spacecraft – presumably launched as part of Starlink-9 or -10 in August – have successfully tested prototype lasers in orbit.
Ever since CEO Elon Musk first revealed SpaceX’s satellite internet ambitions in early 2015, those plans have included some form of interconnection between some or all of the thousands of satellites the company would need to launch. While a functional low Earth orbit (LEO) satellite internet constellation doesn’t intrinsically need to have that capability to function or be successful, inter-satellite links offer some major benefits in return for the added spacecraft complexity and cost.
The single biggest draw of laser interlinks is arguably the major reduction in connection latency (ping) they can enable compared to a similar network without it. By moving a great deal of the work of networking into orbit, the data transported on an interlinked satellite network would theoretically require much less routing to reach an end-user, physically shortening the distance that data has to travel. The speed of light (300,000 kilometers per second) may be immense but even on the small scale of the planet Earth, with the added inefficiencies inherent in even the best fiber optic cables, routing data to and from opposite ends of the planet can still be slowed down by high latency.
Without interlinks, Starlink and internet constellations like it function by acting more like a go-between for individual users and fixed ground stations that then connect those users to the rest of the Internet. Under that regime, the performance of constellations is inherently filtered through the Earth’s existing internet infrastructure and is necessitates the installation of ground stations relatively close to network users. If a satellite without interlinks can ‘see’ (and thus communicate with) customers but can’t ‘see’ a ground station from the same orbital vantage point, it is physically incapable of connecting those communications with the rest of the internet.
This isn’t a showstopper. As SpaceX’s very early Starlink constellation has already demonstrated through beta testers, the network is already capable of serving individual users 100 megabits per second (Mbps) of bandwidth with latency roughly comparable to average wired connections. The result: internet service that is largely the same as (if not slightly worse and less convenient than) existing fiber options. To fully realize a LEO internet constellation’s potential of being much better than fiber, high-performance laser interlinks are thus a necessity.

With laser interlinks, the aforementioned connection dropout scenario would be close to impossible. In the event that an active satellite finds itself serving customers without a ground station in reach, it would route those forlorn data packages by laser to a different satellite with immediate ground station access. One step better, with enough optimization, user communications can be routed by laser to and from the ground stations physically closest to the user and their traffic destination. With a free-floating network of satellites communication in vacuum along straight lines, nothing short of a direct, straight fiber line could compete with the resulting latency and routing efficiency.
Interlinks offer one last significant benefit: by sacrificing latency, an interlinked network will be able to service a larger geographic area by allowing the connections of users far from ground stations to be routed through other satellites to the nearest ground station. Large-scale ground station installation and the international maze of permitting it requires can take an inordinate amount of time and resources for nascent satellite communications constellations
SpaceX’s fully-interlinked Starlink Version 2 constellation is targeting latency as low as 8 milliseconds and hopes to raise the bandwidth limit of individual connections to a gigabit or more. As soon as a viable Starlink v2.0 satellite design has been finalized and tested in orbit, SpaceX will likely end v1.0 production and launches, entering the second phase of iteration after the v0.9 to v1.0 jump.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Starlink terminals smuggled into Iran amid protest crackdown: report
Roughly 6,000 units were delivered following January’s unrest.
The United States quietly moved thousands of Starlink terminals into Iran after authorities imposed internet shutdowns as part of its crackdown on protests, as per information shared by U.S. officials to The Wall Street Journal.
Roughly 6,000 units were delivered following January’s unrest, marking the first known instance of Washington directly supplying the satellite systems inside the country.
Iran’s government significantly restricted online access as demonstrations spread across the country earlier this year. In response, the U.S. purchased nearly 7,000 Starlink terminals in recent months, with most acquisitions occurring in January. Officials stated that funding was reallocated from other internet access initiatives to support the satellite deployment.
President Donald Trump was aware of the effort, though it remains unclear whether he personally authorized it. The White House has not issued a comment about the matter publicly.
Possession of a Starlink terminal is illegal under Iranian law and can result in significant prison time. Despite this, the WSJ estimated that tens of thousands of residents still rely on the satellite service to bypass state controls. Authorities have reportedly conducted inspections of private homes and rooftops to locate unauthorized equipment.
Earlier this year, Trump and Elon Musk discussed maintaining Starlink access for Iranians during the unrest. Tehran has repeatedly accused Washington of encouraging dissent, though U.S. officials have mostly denied the allegations.
The decision to prioritize Starlink sparked internal debate within U.S. agencies. Some officials argued that shifting resources away from Virtual Private Networks (VPNs) could weaken broader internet access efforts. VPNs had previously played a major role in keeping Iranians connected during earlier protest waves, though VPNs are not effective when the actual internet gets cut.
According to State Department figures, about 30 million Iranians used U.S.-funded VPN services during demonstrations in 2022. During a near-total blackout in June 2025, roughly one-fifth of users were still able to access limited connectivity through VPN tools.
Critics have argued that satellite access without VPN protection may expose users to geolocation risks. After funds were redirected to acquire Starlink equipment, support reportedly lapsed for two of five VPN providers operating in Iran.
A State Department official has stated that the U.S. continues to back multiple technologies, including VPNs alongside Starlink, to sustain people’s internet access amidst the government’s shutdowns.
News
Tesla ramps up Sweden price war with cheaper Model Y offer
The incentive effectively acts as a manufacturer-funded EV bonus and makes the entry-level Model Y more affordable.
Tesla has introduced a new 40,000 SEK incentive in Sweden, lowering the price of its most affordable Model Y to a record low. The incentive effectively acts as a manufacturer-funded EV bonus and makes the entry-level Model Y more affordable.
As per a report from Swedish auto outlet Allt om Elbil, Tesla Sweden is offering a 40,000 SEK electric car bonus on the entry-level Tesla Model Y Rear-Wheel Drive variant. The incentive lowers the purchase price of the base all-electric crossover to 459,900–459,990 SEK, depending on listing.
The bonus applies to orders and deliveries completed by March 31, 2026. Tesla Sweden is also offering zero-interest financing as part of the campaign.
Last fall, Tesla launched a new base version of the Model Y starting at 499,990 SEK. The variant features a refreshed design and simplified equipment compared to the Premium and Performance variants. The new 40,000 SEK incentive now pushes the entry model well below the 460,000 SEK mark.
So far this year, the Model Y remains the most registered electric vehicle in Sweden and the third most registered new car overall. However, most registrations have been for higher Premium-spec versions. The new incentive could then be Tesla’s way to push sales of its most affordable Model Y variant in the country.
Tesla is also promoting private leasing options for the entry-level Model Y at 4,995 SEK per month. Swedish automotive observers have noted that leasing may remain the more cost-effective option compared to purchasing outright, even after the new discount.
The base Model Y Rear-Wheel Drive offers a WLTP range of 534 kilometers, a top speed of 201 km/h, and a 0–100 km/h time of 7.2 seconds. Tesla lists energy consumption at 13.1 kWh per 100 kilometers, making it the most efficient version of the vehicle in the lineup and potentially lowering overall ownership costs.
News
Tesla China hires Autopilot Test Engineer amid continued FSD rollout preparations
The role is based in Lingang, the district that houses Gigafactory Shanghai.
Tesla is hiring an Autopilot Test Engineer in Shanghai, a move that signals continued groundwork for the validation of Full Self-Driving (FSD) in China. The role is based in Lingang, the district that houses Gigafactory Shanghai and has become a key testing zone for advanced autonomous features.
As observed by Tesla watchers, local authorities in Shanghai’s Nanhui New City within Lingang have previously authorized a fleet of Teslas to run advanced driving tests on public roads. This marked one of the first instances where foreign automakers were permitted to test autonomous driving systems under real traffic conditions in China.
Tesla’s hiring efforts come amid ongoing groundwork for a full FSD rollout in China. Earlier reporting noted that Tesla China has been actively preparing the regulatory and infrastructure foundation needed for full FSD deployment, even though the company has not yet announced a firm launch date for the feature in the market.
As per recent comments from Tesla China Vice President Grace Tao, the electric vehicle maker has been busy setting up the necessary facilities to support FSD’s full rollout in the country. In a comment to local media, Tao stated that FSD should demonstrate a level of performance that could surpass human drivers once it is fully rolled out.
“We have set up a local training center in China specifically to handle this adaptation,” Tao said. “Once officially released, it will demonstrate a level of performance that is no less than, and may even surpass, that of local drivers.”
Tesla CEO Elon Musk has been quite bullish about a potential FSD rollout in China. During the 2025 Annual Shareholder Meeting, Musk emphasized that FSD had only received “partial approval” in China, though full authorization could potentially arrive around February or March 2026. This timeline was reiterated by the CEO during his appearance at the World Economic Forum in Davos.