Connect with us

News

SpaceX Starlink ‘space lasers’ successfully tested in orbit for the first time

SpaceX has revealed the first successful test of Starlink satellite 'space lasers' in orbit, paving the way towards an even more powerful constellation. (SpaceX/Teslarati)

Published

on

SpaceX has revealed the first successful test of Starlink satellite ‘space lasers’ in orbit, a significant step along the path to an upgraded “Version 2” constellation.

In simple terms, those “lasers” are a form of optical (light-based) communication with an extremely high bandwidth ceiling, potentially permitting the wireless, high-speed transfer of vast quantities of data over equally vast distances. Of the ~715 Starlink satellites SpaceX has launched over the last 16 months, some 650 are operational Version 1 (v1.0) spacecraft designed to serve a limited group of customers in the early stages of the constellation. Prior to SpaceX’s September 3rd announcement, it was assumed that none of those satellites included laser interlinks, but now we know that two spacecraft – presumably launched as part of Starlink-9 or -10 in August – have successfully tested prototype lasers in orbit.

Ever since CEO Elon Musk first revealed SpaceX’s satellite internet ambitions in early 2015, those plans have included some form of interconnection between some or all of the thousands of satellites the company would need to launch. While a functional low Earth orbit (LEO) satellite internet constellation doesn’t intrinsically need to have that capability to function or be successful, inter-satellite links offer some major benefits in return for the added spacecraft complexity and cost.

The single biggest draw of laser interlinks is arguably the major reduction in connection latency (ping) they can enable compared to a similar network without it. By moving a great deal of the work of networking into orbit, the data transported on an interlinked satellite network would theoretically require much less routing to reach an end-user, physically shortening the distance that data has to travel. The speed of light (300,000 kilometers per second) may be immense but even on the small scale of the planet Earth, with the added inefficiencies inherent in even the best fiber optic cables, routing data to and from opposite ends of the planet can still be slowed down by high latency.

Without interlinks, Starlink and internet constellations like it function by acting more like a go-between for individual users and fixed ground stations that then connect those users to the rest of the Internet. Under that regime, the performance of constellations is inherently filtered through the Earth’s existing internet infrastructure and is necessitates the installation of ground stations relatively close to network users. If a satellite without interlinks can ‘see’ (and thus communicate with) customers but can’t ‘see’ a ground station from the same orbital vantage point, it is physically incapable of connecting those communications with the rest of the internet.

Advertisement

This isn’t a showstopper. As SpaceX’s very early Starlink constellation has already demonstrated through beta testers, the network is already capable of serving individual users 100 megabits per second (Mbps) of bandwidth with latency roughly comparable to average wired connections. The result: internet service that is largely the same as (if not slightly worse and less convenient than) existing fiber options. To fully realize a LEO internet constellation’s potential of being much better than fiber, high-performance laser interlinks are thus a necessity.

60 Starlink v1.0 satellites prepare for flight. (SpaceX)

With laser interlinks, the aforementioned connection dropout scenario would be close to impossible. In the event that an active satellite finds itself serving customers without a ground station in reach, it would route those forlorn data packages by laser to a different satellite with immediate ground station access. One step better, with enough optimization, user communications can be routed by laser to and from the ground stations physically closest to the user and their traffic destination. With a free-floating network of satellites communication in vacuum along straight lines, nothing short of a direct, straight fiber line could compete with the resulting latency and routing efficiency.

Interlinks offer one last significant benefit: by sacrificing latency, an interlinked network will be able to service a larger geographic area by allowing the connections of users far from ground stations to be routed through other satellites to the nearest ground station. Large-scale ground station installation and the international maze of permitting it requires can take an inordinate amount of time and resources for nascent satellite communications constellations

SpaceX’s fully-interlinked Starlink Version 2 constellation is targeting latency as low as 8 milliseconds and hopes to raise the bandwidth limit of individual connections to a gigabit or more. As soon as a viable Starlink v2.0 satellite design has been finalized and tested in orbit, SpaceX will likely end v1.0 production and launches, entering the second phase of iteration after the v0.9 to v1.0 jump.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Investor's Corner

xAI targets $5 billion debt offering to fuel company goals

Elon Musk’s xAI is targeting a $5B debt raise, led by Morgan Stanley, to scale its artificial intelligence efforts.

Published

on

(Credit: xAI)

xAI’s $5 billion debt offering, marketed by Morgan Stanley, underscores Elon Musk’s ambitious plans to expand the artificial intelligence venture. The xAI package comprises bonds and two loans, highlighting the company’s strategic push to fuel its artificial intelligence development.

Last week, Morgan Stanley began pitching a floating-rate term loan B at 97 cents on the dollar with a variable interest rate of 700 basis points over the SOFR benchmark, one source said. A second option offers a fixed-rate loan and bonds at 12%, with terms contingent on investor appetite. This “best efforts” transaction, where the debt size hinges on demand, reflects cautious lending in an uncertain economic climate.

According to Reuters sources, Morgan Stanley will not guarantee the issue volume or commit its own capital in the xAI deal, marking a shift from past commitments. The change in approach stems from lessons learned during Musk’s 2022 X acquisition when Morgan Stanley and six other banks held $13 billion in debt for over two years.

Morgan Stanley and the six other banks backing Musk’s X acquisition could only dispose of that debt earlier this year. They capitalized on X’s improved operating performance over the previous two quarters as traffic on the platform increased engagement around the U.S. presidential elections. This time, Morgan Stanley’s prudent strategy mitigates similar risks.

Advertisement

Beyond debt, xAI is in talks to raise $20 billion in equity, potentially valuing the company between $120 billion and $200 billion, sources said. In April, Musk hinted at a significant valuation adjustment for xAI, stating he was looking to put a “proper value” on xAI during an investor call.

As xAI pursues this $5 billion debt offering, its financial strategy positions it to lead the AI revolution, blending innovation with market opportunity.

Continue Reading

News

SpaceX to debut new Dragon capsule in Axiom Space launch

Ax-4’s launch marks the debut of SpaceX’s latest Crew Dragon and pushes Axiom closer to building its own space station.

Published

on

spacex-dragon-axiom-ax-4-mission-iss
(Credit: SpaceX)

Axiom Space’s Ax-4 mission targets the International Space Station (ISS) with a new SpaceX Crew Dragon capsule.

The Axiom team will launch a new SpaceX Dragon capsule atop a Falcon 9 rocket from NASA’s Kennedy Space Center in Florida on Wednesday at 8:00 a.m. EDT (1200 GMT). The Ax-4 mission launch was initially set for Tuesday, June 10, but was delayed by one day due to expected high winds.

As Axiom Space’s fourth crewed mission to the ISS, Ax-4 marks the debut of an updated SpaceX Crew Dragon capsule. “This is the first flight for this Dragon capsule, and it’s carrying an international crew—a perfect debut. We’ve upgraded storage, propulsion components, and the seat lash design for improved reliability and reuse,” said William Gerstenmaier, SpaceX’s vice president of build and flight reliability.

Axiom Space is a Houston-based private space infrastructure company. It has been launching private astronauts to the ISS for research and training since 2022, building expertise for its future station. With NASA planning to decommission the ISS by 2030, Axiom has laid the groundwork for the Axiom Station, the world’s first commercial space station. The company has already begun construction on its ISS replacement.

Advertisement

The Ax-4 mission’s research, spanning biological, life, and material sciences and Earth observation, will support this ambitious goal. Contributions from 31 countries underscore the mission’s global scope. The four-person crew will launch from Launch Complex 39A, embarking on a 14-day mission to conduct approximately 60 scientific studies.

“The AX-4 crew represents the very best of international collaboration, dedication, and human potential. Over the past 10 months, these astronauts have trained with focus and determination, each of them exceeding the required thresholds to ensure mission safety, scientific rigor, and operational excellence,” said Allen Flynt, Axiom Space’s chief of mission services.

The Ax-4 mission highlights Axiom’s commitment to advancing commercial space exploration. By leveraging SpaceX’s Dragon capsule and conducting diverse scientific experiments, Axiom is paving the way for its Axiom Station. This mission not only strengthens international collaborations but also positions Axiom as a leader in the evolving landscape of private space infrastructure.

Continue Reading

News

Tesla named official AV operator in Austin ahead of robotaxi launch

Tesla robotaxis could begin operating around Austin any day now, as echoed by an update to the city’s website.

Published

on

Just as Tesla prepares to launch its own commercial robotaxi services in Austin, Texas this month, the company has now appeared on the state’s website as an official operator of autonomous vehicles (AVs).

As of Monday, Tesla has been listed as an AV operator on Austin’s official Department of Motor Vehicles (DMV) site, ahead of the company’s expected launch of the long-awaited service sometime this month. The news, which X user Tesla Yoda first spotted, precedes some reports suggesting the robotaxi service could launch in the coming days, and it comes as the city becomes an increasingly competitive stomping ground for the emerging technology.

Although Tesla has been included on the list, the website says that Tesla is still in the testing phase, alongside most of the other AV operators in the city. At this time, Alphabet-owned robotaxi company Waymo is the only operator listed as being in the deployment phase, while Hyundai-owned company Motional is listed as being in the mapping phase.

Tesla is set to initially deploy the service as a limited pilot program using the company’s existing Model Y vehicles, and it will start by testing them in the safest areas of the city within geo-mapped boundaries as extra safety precautions upon launch.

Below you can see the full list of AV operators on the Austin DMV website at the time of writing, including both the Alphabet-owned Waymo and the Amazon-run Zoox.

Current list of AV operators in Austin

  • ADMT
    • Phase: testing
    • Parent company: VW
  • AVRide
    • Phase: testing
    • Parent company: AVRide Inc
  • Motional
    • Phase: mapping
    • Parent company: Hyundai
  • Waymo
    • Phase: deployment
    • Parent company: Alphabet (Google)
  • Tesla
    • Phase: testing
    • Parent company: Tesla
  • Zoox
    • Phase: testing
    • Parent company: Amazon

READ MORE ON AUTONOMOUS VEHICLES: Elon Musk just revealed more about Tesla’s June Robotaxi launch

Tesla’s Austin robotaxi launch, Full Self-Driving, and other AV companies

The news follows a report from Bloomberg a few weeks ago saying that Tesla was considering a launch date of June 12 for the service, though the validity of that report is still unclear. Additionally, Tesla could still change its plans on a launch date, though the company’s inclusion on the Austin DMV AV operators list appears to be a good sign either way.

The company has also been running internal pilot programs for the robotaxi service in Austin and around the Bay Area, California, with around 300 test operators operating the vehicles in the Texas city since at least April. Last fall, CEO Elon Musk also said that employees had already been piloting a ride-hailing program around the Bay.

Tesla has long touted its Full Self-Driving (FSD) program as the solution to autonomy, with the system utilizing cameras and real-time driver footage to train its AI neural network on how to drive. By comparison, most other companies utilize cameras and radar systems together, while relying on geo-mapped systems to determine where the robotaxi can operate.

Waymo launched driverless ride-hailing services in Austin through a partnership with Uber, though the company has also been running paid robotaxi rides in various parts of California since last year through its Waymo One app. Other companies such as the Amazon-owned firm Zoox and the Hyundai-led company Motional are also preparing to deploy services in Austin and other U.S. cities.

Tesla’s ‘Project Alicorn’ and what it means for the Robotaxi platform

Continue Reading

Trending